8 research outputs found

    Engineering genetically encoded FRET sensors

    No full text
    Förster Resonance Energy Transfer (FRET) between two fluorescent proteins can be exploited to create fully genetically encoded and thus subcellularly targetable sensors. FRET sensors report changes in energy transfer between a donor and an acceptor fluorescent protein that occur when an attached sensor domain undergoes a change in conformation in response to ligand binding. The design of sensitive FRET sensors remains challenging as there are few generally applicable design rules and each sensor must be optimized anew. In this review we discuss various strategies that address this shortcoming, including rational design approaches that exploit self-associating fluorescent domains and the directed evolution of FRET sensors using high-throughput screening

    Engineering genetically encoded FRET sensors

    Get PDF
    Förster Resonance Energy Transfer (FRET) between two fluorescent proteins can be exploited to create fully genetically encoded and thus subcellularly targetable sensors. FRET sensors report changes in energy transfer between a donor and an acceptor fluorescent protein that occur when an attached sensor domain undergoes a change in conformation in response to ligand binding. The design of sensitive FRET sensors remains challenging as there are few generally applicable design rules and each sensor must be optimized anew. In this review we discuss various strategies that address this shortcoming, including rational design approaches that exploit self-associating fluorescent domains and the directed evolution of FRET sensors using high-throughput screening

    Rational design of FRET sensor proteins based on mutually exclusive domain interactions

    No full text
    Proteins that switch between distinct conformational states are ideal to monitor and control molecular processes within the complexity of biological systems. Inspired by the modular architecture of natural signalling proteins, our group explores generic design strategies for the construction of FRET-based sensor proteins and other protein switches. In the present article, I show that designing FRET sensors based on mutually exclusive domain interactions provides a robust method to engineer sensors with predictable properties and an inherently large change in emission ratio. The modularity of this approach should make it easily transferable to other applications of protein switches in fields ranging from synthetic biology, optogenetics and molecular diagnostics

    Robust red FRET sensors using self-associating fluorescent domains

    No full text
    Elucidation of subcellular signaling networks by multiparameter imaging is hindered by a lack of sensitive FRET pairs spectrally compatible with the classic CFP/YFP pair. Here, we present a generic strategy to enhance the traditionally poor sensitivity of red FRET sensors by developing self-associating variants of mOrange and mCherry that allow sensors to switch between well-defined on- and off states. Requiring just a single mutation of the mFruit domain, this new FRET pair improved the dynamic range of protease sensors up to 10-fold and was essential to generate functional red variants of CFP-YFP-based Zn2+ sensors. The large dynamic range afforded by the new red FRET pair allowed simultaneous use of differently colored Zn2+ FRET sensors to image Zn2+ over a broad concentration range in the same cellular compartment

    Robust red FRET sensors using self-associating fluorescent domains

    No full text
    Elucidation of subcellular signaling networks by multiparameter imaging is hindered by a lack of sensitive FRET pairs spectrally compatible with the classic CFP/YFP pair. Here, we present a generic strategy to enhance the traditionally poor sensitivity of red FRET sensors by developing self-associating variants of mOrange and mCherry that allow sensors to switch between well-defined on- and off states. Requiring just a single mutation of the mFruit domain, this new FRET pair improved the dynamic range of protease sensors up to 10-fold and was essential to generate functional red variants of CFP-YFP-based Zn2+ sensors. The large dynamic range afforded by the new red FRET pair allowed simultaneous use of differently colored Zn2+ FRET sensors to image Zn2+ over a broad concentration range in the same cellular compartment

    Quantifying stickiness: thermodynamic characterization of intramolecular domain interactions to guide the design of forster resonance energy transfer sensors

    No full text
    Item does not contain fulltextThe introduction of weak, hydrophobic interactions between fluorescent protein domains (FPs) can substantially increase the dynamic range (DR) of Forster resonance energy transfer (FRET)-based sensor systems. Here we report a comprehensive thermodynamic characterization of the stability of a range of self-associating FRET pairs. A new method is introduced that allows direct quantification of the stability of weak FP interactions by monitoring intramolecular complex formation as a function of urea concentration. The commonly used S208F mutation stabilized intramolecular FP complex formation by 2.0 kCal/mol when studied in an enhanced cyan FP (ECFP)-linker-enhanced yellow FP (EYFP) fusion protein, whereas a significantly weaker interaction was observed for the homologous Cerulean/Citrine FRET pair (DeltaG0(o-c) = 0.62 kCal/mol). The latter effect could be attributed to two mutations in Cerulean (Y145A and H148D) that destabilize complex formation with Citrine. Systematic analysis of the contribution of residues 125 and 127 at the dimerization interface in mOrange.linker.mCherry fusion proteins yielded a toolbox of new mOrange-mCherry combinations that allowed tuning of their intramolecular interaction from very weak (DeltaG0(o-c) = .0.39 kCal/mol) to relatively stable (DeltaG0(o-c) = 2.2 kCal/mol). The effects of these mutations were also studied by monitoring homodimerization of mCherry variants using fluorescence anisotropy. These mutations affected intramolecular and intermolecular domain interactions similarly, although FP interactions were found to be stronger in the latter. The knowledge thus obtained allowed successful construction of a red-shifted variant of the bile acid FRET sensor BAS-1 by replacement of the self-associating Cerulean-Citrine pair by mOrange.mCherry variants with a similar intramolecular affinity. Our findings thus allow a better understanding of the subtle but important role of intramolecular domain interactions in current FRET sensors and help guide the construction of new sensors using modular design strategies

    Ca 2+

    No full text
    corecore