273 research outputs found

    Cooperation:Sociological aspects

    Get PDF

    Modellbau und Realität

    Get PDF

    Modellbau und Realität

    Get PDF

    Density matrix operatorial solution of the non--Markovian Master Equation for Quantum Brownian Motion

    Full text link
    An original method to exactly solve the non-Markovian Master Equation describing the interaction of a single harmonic oscillator with a quantum environment in the weak coupling limit is reported. By using a superoperatorial approach we succeed in deriving the operatorial solution for the density matrix of the system. Our method is independent of the physical properties of the environment. We show the usefulness of our solution deriving explicit expressions for the dissipative time evolution of some observables of physical interest for the system, such as, for example, its mean energy.Comment: 16 pages, 1 figur

    Intergenerational transmission of child maltreatment using a multi-informant multi-generation family design

    Get PDF
    In the current study a three-generational design was used to investigate intergenerational transmission of child maltreatment (ITCM) using multiple sources of information on child maltreatment: mothers, fathers and children. A tota

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    The genetic architecture of the human cerebral cortex

    Get PDF
    INTRODUCTION The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure. RATIONALE To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations. RESULTS We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness). Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness. To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity. We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism. CONCLUSION This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function

    A Delphi-method-based consensus guideline for definition of treatment-resistant depression for clinical trials

    Get PDF
    Criteria for treatment-resistant depression (TRD) and partially responsive depression (PRD) as subtypes of major depressive disorder (MDD) are not unequivocally defined. In the present document we used a Delphi-method-based consensus approach to define TRD and PRD and to serve as operational criteria for future clinical studies, especially if conducted for regulatory purposes. We reviewed the literature and brought together a group of international experts (including clinicians, academics, researchers, employees of pharmaceutical companies, regulatory bodies representatives, and one person with lived experience) to evaluate the state-of-the-art and main controversies regarding the current classification. We then provided recommendations on how to design clinical trials, and on how to guide research in unmet needs and knowledge gaps. This report will feed into one of the main objectives of the EUropean Patient-cEntric clinicAl tRial pLatforms, Innovative Medicines Initiative (EU-PEARL, IMI) MDD project, to design a protocol for platform trials of new medications for TRD/PRD. © 2021, The Author(s).EU/EFPIA/Innovative Medicines Initiative 2 Joint Undertaking
    corecore