11,100 research outputs found

    Localization and its consequences for quantum walk algorithms and quantum communication

    Get PDF
    The exponential speed-up of quantum walks on certain graphs, relative to classical particles diffusing on the same graph, is a striking observation. It has suggested the possibility of new fast quantum algorithms. We point out here that quantum mechanics can also lead, through the phenomenon of localization, to exponential suppression of motion on these graphs (even in the absence of decoherence). In fact, for physical embodiments of graphs, this will be the generic behaviour. It also has implications for proposals for using spin networks, including spin chains, as quantum communication channels.Comment: 4 pages, 1 eps figure. Updated references and cosmetic changes for v

    Continuous Time and Consistent Histories

    Get PDF
    We discuss the use of histories labelled by a continuous time in the approach to consistent-histories quantum theory in which propositions about the history of the system are represented by projection operators on a Hilbert space. This extends earlier work by two of us \cite{IL95} where we showed how a continuous time parameter leads to a history algebra that is isomorphic to the canonical algebra of a quantum field theory. We describe how the appropriate representation of the history algebra may be chosen by requiring the existence of projection operators that represent propositions about time average of the energy. We also show that the history description of quantum mechanics contains an operator corresponding to velocity that is quite distinct from the momentum operator. Finally, the discussion is extended to give a preliminary account of quantum field theory in this approach to the consistent histories formalism.Comment: Typeset in RevTe

    Continuous Histories and the History Group in Generalised Quantum Theory

    Full text link
    We treat continuous histories within the histories approach to generalised quantum mechanics. The essential tool is the `history group': the analogue, within the generalised history scheme, of the canonical group of single-time quantum mechanics.Comment: 25 page

    Angry expressions strengthen the encoding and maintenance of face identity representations in visual working memory

    Get PDF
    This work was funded by a BBSRC grant (BB/G021538/2) to all authors.Peer reviewedPreprin

    Adenosine A2A receptors intrinsically regulate CD8+ T cells in the tumor microenvironment

    Get PDF
    Adenosine A2A receptor (A2AR) blockade enhances innate and adaptive immune responses. However, mouse genetic studies have shown that A2AR deletion does not inhibit the growth of all tumor types. In the current study, we showed that growth rates for ectopic melanoma and bladder tumors are increased in Adora2a-/- mice within 2 weeks of tumor inoculation. A2AR deletion in the host reduced numbers of CD8+ T cells and effector-memory differentiation of all T cells. To examine intrinsic functions in T cells, we generated mice harboring a T-cell-specific deletion of A2AR. In this host strain, tumor-bearing mice displayed increased growth of ectopic melanomas, decreased numbers of tumor-associated T cells, reduced effector-memory differentiation, and reduced antiapoptotic IL7Rα (CD127) expression on antigen-experienced cells. Intratumoral pharmacologic blockade similarly reduced CD8+ T-cell density within tumors in wild-type hosts. We found that A2AR-proficient CD8+ T cells specific for melanoma cells displayed a relative survival advantage in tumors. Thus, abrogating A2AR signaling appeared to reduce IL7R expression, survival, and differentiation of T cells in the tumor microenvironment. One implication of these results is that the antitumor effects of A2AR blockade that can be mediated by activation of cytotoxic T cells may be overcome in some tumor microenvironments as a result of impaired T-cell maintenance and effector-memory differentiation. Thus, our findings imply that the efficacious application of A2AR inhibitors for cancer immunotherapy may require careful dose optimization to prevent activation-induced T-cell death in tumors. ©2014 AACR

    Equilibration of quantum systems and subsystems

    Full text link
    We unify two recent results concerning equilibration in quantum theory. We first generalise a proof of Reimann [PRL 101,190403 (2008)], that the expectation value of 'realistic' quantum observables will equilibrate under very general conditions, and discuss its implications for the equilibration of quantum systems. We then use this to re-derive an independent result of Linden et. al. [PRE 79, 061103 (2009)], showing that small subsystems generically evolve to an approximately static equilibrium state. Finally, we consider subspaces in which all initial states effectively equilibrate to the same state.Comment: 5 page

    Information-entropy and the space of decoherence functions in generalised quantum theory

    Get PDF
    In standard quantum theory, the ideas of information-entropy and of pure states are closely linked. States are represented by density matrices ρ\rho on a Hilbert space and the information-entropy −tr(ρlogâĄÏ)-tr(\rho\log\rho) is minimised on pure states (pure states are the vertices of the boundary of the convex set of states). The space of decoherence functions in the consistent histories approach to generalised quantum theory is also a convex set. However, by showing that every decoherence function can be written as a convex combination of two other decoherence functions we demonstrate that there are no `pure' decoherence functions. The main content of the paper is a new notion of information-entropy in generalised quantum mechanics which is applicable in contexts in which there is no a priori notion of time. Information-entropy is defined first on consistent sets and then we show that it decreases upon refinement of the consistent set. This information-entropy suggests an intrinsic way of giving a consistent set selection criterion

    Reconstruction of the phase of matter-wave fields using a momentum resolved cross-correlation technique

    Full text link
    We investigate the potential of the so-called XFROG cross-correlation technique originally developed for ultrashort laser pulses for the recovery of the amplitude and phase of the condensate wave function of a Bose-Einstein condensate. Key features of the XFROG method are its high resolution, versatility and stability against noise and some sources of systematic errors. After showing how an analogue of XFROG can be realized for Bose-Einstein condensates, we illustrate its effectiveness in determining the amplitude and phase of the wave function of a vortex state. The impact of a reduction of the number of measurements and of typical sources of noise on the field reconstruction are also analyzed.Comment: 7 pages; 9 figures; article with higher resolution figures available from author

    Quasi-Particle Degrees of Freedom versus the Perfect Fluid as Descriptors of the Quark-Gluon Plasma

    Full text link
    The hot nuclear matter created at the Relativistic Heavy Ion Collider (RHIC) has been characterized by near-perfect fluid behavior. We demonstrate that this stands in contradiction to the identification of QCD quasi-particles with the thermodynamic degrees of freedom in the early (fluid) stage of heavy ion collisions. The empirical observation of constituent quark ``nqn_q'' scaling of elliptic flow is juxtaposed with the lack of such scaling behavior in hydrodynamic fluid calculations followed by Cooper-Frye freeze-out to hadrons. A ``quasi-particle transport'' time stage after viscous effects break down the hydrodynamic fluid stage, but prior to hadronization, is proposed to reconcile these apparent contradictions. However, without a detailed understanding of the transitions between these stages, the ``nqn_q'' scaling is not a necessary consequence of this prescription. Also, if the duration of this stage is too short, it may not support well defined quasi-particles. By comparing and contrasting the coalescence of quarks into hadrons with the similar process of producing light nuclei from nucleons, it is shown that the observation of ``nqn_{q}'' scaling in the final state does not necessarily imply that the constituent degrees of freedom were the relevant ones in the initial state.Comment: 9 pages, 7 figures, Updated text and figure
    • 

    corecore