4,299 research outputs found
Melting and Rippling Phenomenan in Two Dimensional Crystals with localized bonding
We calculate Root Mean Square (RMS) deviations from equilibrium for atoms in
a two dimensional crystal with local (e.g. covalent) bonding between close
neighbors. Large scale Monte Carlo calculations are in good agreement with
analytical results obtained in the harmonic approximation. When motion is
restricted to the plane, we find a slow (logarithmic) increase in fluctuations
of the atoms about their equilibrium positions as the crystals are made larger
and larger. We take into account fluctuations perpendicular to the lattice
plane, manifest as undulating ripples, by examining dual layer systems with
coupling between the layers to impart local rigidly (i.e. as in sheets of
graphene made stiff by their finite thickness). Surprisingly, we find a rapid
divergence with increasing system size in the vertical mean square deviations,
independent of the strength of the interplanar coupling. We consider an
attractive coupling to a flat substrate, finding that even a weak attraction
significantly limits the amplitude and average wavelength of the ripples. We
verify our results are generic by examining a variety of distinct geometries,
obtaining the same phenomena in each case.Comment: 17 pages, 28 figure
Plasticization and antiplasticization of polymer melts diluted by low molar mass species
An analysis of glass formation for polymer melts that are diluted by
structured molecular additives is derived by using the generalized entropy
theory, which involves a combination of the Adam-Gibbs model and the direct
computation of the configurational entropy based on a lattice model of polymer
melts that includes monomer structural effects. Antiplasticization is
accompanied by a "toughening" of the glass mixture relative to the pure
polymer, and this effect is found to occur when the diluents are small species
with strongly attractive interactions with the polymer matrix. Plasticization
leads to a decreased glass transition temperature T_g and a "softening" of the
fragile host polymer in the glass state. Plasticization is prompted by small
additives with weakly attractive interactions with the polymer matrix. The
shifts in T_g of polystyrene diluted by fully flexible short oligomers are
evaluated from the computations, along with the relative changes in the
isothermal compressibility at T_g to characterize the extent to which the
additives act as antiplasticizers or plasticizers. The theory predicts that a
decreased fragility can accompany both antiplasticization and plasticization of
the glass by molecular additives. The general reduction in the T_g and
fragility of polymers by these molecular additives is rationalized by analyzing
the influence of the diluent's properties (cohesive energy, chain length, and
stiffness) on glass formation in diluted polymer melts. The description of
glass formation at fixed temperature that is induced upon change the fluid
composition directly implies the Angell equation for the structural relaxation
time as function of the polymer concentration, and the computed "zero mobility
concentration" scales linearly with the inverse polymerization index N.Comment: 12 pages, 15 figure
Immersed nano-sized Al dispersoids in an Al matrix; effects on the structural and mechanical properties by Molecular Dynamics simulations
We used molecular dynamics simulations based on a potential model in analogy
to the Tight Binding scheme in the Second Moment Approximation to simulate the
effects of aluminum icosahedral grains (dispersoids) on the structure and the
mechanical properties of an aluminum matrix. First we validated our model by
calculating several thermodynamic properties referring to the bulk Al case and
we found good agreement with available experimental and theoretical data.
Afterwards, we simulated Al systems containing Al clusters of various sizes. We
found that the structure of the Al matrix is affected by the presence of the
dispersoids resulting in well ordered domains of different symmetries that were
identified using suitable Voronoi analysis. In addition, we found that the
increase of the grain size has negative effect on the mechanical properties of
the nanocomposite as manifested by the lowering of the calculated bulk moduli.
The obtained results are in line with available experimental data.Comment: 15 pages, 8 figures. Submitted to J. Phys: Condens. Matte
Fragility and compressibility at the glass transition
Isothermal compressibilities and Brillouin sound velocities from the
literature allow to separate the compressibility at the glass transition into a
high-frequency vibrational and a low-frequency relaxational part. Their ratio
shows the linear fragility relation discovered by x-ray Brillouin scattering
[1], though the data bend away from the line at higher fragilities. Using the
concept of constrained degrees of freedom, one can show that the vibrational
part follows the fragility-independent Lindemann criterion; the fragility
dependence seems to stem from the relaxational part. The physical meaning of
this finding is discussed. [1] T. Scopigno, G. Ruocco, F. Sette and G. Monaco,
Science 302, 849 (2003)Comment: 4 pages, 2 figures, 2 tables, 33 references. Slightly changed after
  refereein
Why do ultrasoft repulsive particles cluster and crystallize? Analytical results from density functional theory
We demonstrate the accuracy of the hypernetted chain closure and of the
mean-field approximation for the calculation of the fluid-state properties of
systems interacting by means of bounded and positive-definite pair potentials
with oscillating Fourier transforms. Subsequently, we prove the validity of a
bilinear, random-phase density functional for arbitrary inhomogeneous phases of
the same systems. On the basis of this functional, we calculate analytically
the freezing parameters of the latter. We demonstrate explicitly that the
stable crystals feature a lattice constant that is independent of density and
whose value is dictated by the position of the negative minimum of the Fourier
transform of the pair potential. This property is equivalent with the existence
of clusters, whose population scales proportionally to the density. We
establish that regardless of the form of the interaction potential and of the
location on the freezing line, all cluster crystals have a universal Lindemann
ratio L = 0.189 at freezing. We further make an explicit link between the
aforementioned density functional and the harmonic theory of crystals. This
allows us to establish an equivalence between the emergence of clusters and the
existence of negative Fourier components of the interaction potential. Finally,
we make a connection between the class of models at hand and the system of
infinite-dimensional hard spheres, when the limits of interaction steepness and
space dimension are both taken to infinity in a particularly described fashion.Comment: 19 pages, 5 figures, submitted to J. Chem. Phys; new version: minor
  changes in structure of pape
Effects of inclusion of spray-dried porcine plasma in lactation diets on sow and litter performance.
Feeding live prey to zoo animals: response of zoo visitors in Switzerland
In summer 2007, with the help of a written questionnaire, the attitudes of more than 400 visitors to the zoological garden of Zurich, Switzerland, toward the idea of feeding live insects to lizards, live fish to otters, and live rabbits to tigers were investigated. The majority of Swiss zoo visitors agreed with the idea of feeding live prey (invertebrates and vertebrates) to zoo animals, both off- and on-exhibit, except in the case of feeding live rabbits to tigers on-exhibit. Women and frequent visitors of the zoo disagreed more often with the on-exhibit feeding of live rabbits to tigers. Study participants with a higher level of education were more likely to agree with the idea of feeding live invertebrates and vertebrates to zoo animals
off-exhibit. In comparison to an earlier study undertaken in Scotland, zoo visitors in Switzerland were more often in favor of the live feeding of vertebrates. Feeding live prey can counter the loss of hunting skills of carnivores and improve the animals’ well-being. However, feeding enrichments have to strike a balance between optimal living conditions of animals and the quality of visitor experience.
Our results show that such a balance can be found, especially when live feeding of mammals is carried out off-exhibit. A good interpretation of food enrichment might help zoos to win more support for the issue, and for re-introduction programs and conservation
- …
