13 research outputs found

    Simulation and Testing of Maneuvering of a Planetary Rover

    Get PDF
    A report discusses the development of a computational model of a Mars Explorer Rover maneuvering across terrain under varying conditions. The model is used to increase understanding of the rover dynamics

    XTerramechanics: Integrated Simulation of Planetary Surface Missions

    Get PDF
    Are there contemporary habitats elsewhere in the solar system with necessary conditions, organic matter, water, energy, and nutrients to support or sustain life. Are there habitats that have experienced conditions similar to those on Earth when life emerged ,an abode of possible lifelong past. Mars and Europa(Jupiter’s icy moon)have been identified as the most relevant and immediate in the quest to answer these questions. Beyond Mars and Europa, every celestial body of interest appears to have its own geological history and every new discovery accentuates the overall complexity of our solar system. The exploration of Mars and Europa, and others, both remotely and in situ, is a central priority as part of NASA’s current and future goals for understanding the building of new worlds, the requirements for planetary habitats, and the workings of the solar system

    Robotic Arm Manipulator Using Active Control for Sample Acquisition and Transfer, and Passive Mode for Surface Compliance

    Get PDF
    A robotic arm that consists of three joints with four degrees of freedom (DOF) has been developed. It can carry an end-effector to acquire and transfer samples by using active control and comply with surface topology in a passive mode during a brief surface contact. The three joints are arranged in such a way that one joint of two DOFs is located at the shoulder, one joint of one DOF is located at the elbow, and one joint of one DOF is located at the wrist. Operationally, three DOFs are moved in the same plane, and the remaining one on the shoulder is moved perpendicular to the other three for better compliance with ground surface and more flexibility of sample handling. Three out of four joints are backdriveable, making the mechanism less complex and more cost effectiv

    XTerramechanics: Integrated Simulation of Planetary Surface Missions

    Get PDF
    Are there contemporary habitats elsewhere in the solar system with necessary conditions, organic matter, water, energy, and nutrients to support or sustain life. Are there habitats that have experienced conditions similar to those on Earth when life emerged ,an abode of possible lifelong past. Mars and Europa(Jupiter’s icy moon)have been identified as the most relevant and immediate in the quest to answer these questions. Beyond Mars and Europa, every celestial body of interest appears to have its own geological history and every new discovery accentuates the overall complexity of our solar system. The exploration of Mars and Europa, and others, both remotely and in situ, is a central priority as part of NASA’s current and future goals for understanding the building of new worlds, the requirements for planetary habitats, and the workings of the solar system

    Dynamic modeling and simulation of planetary rovers

    Full text link

    An integrated coring and caching concept

    No full text

    Dynamic Modeling and Soil Mechanics for Path Planning of the Mars Exploration Rovers

    Full text link
    To help minimize risk of high sinkage and slippage during drives and to better understand soil properties and rover terramechanics from drive data, a multidisciplinary team was formed under the Mars Exploration Rover (MER) project to develop and utilize dynamic computer-based models for rover drives over realistic terrains. The resulting tool, named ARTEMIS (Adams-based Rover Terramechanics and Mobility Interaction Simulator), consists of the dynamic model, a library of terramechanics subroutines, and the high-resolution digital elevation maps of the Mars surface. A 200-element model of the rovers was developed and validated for drop tests before launch, using MSC-Adams dynamic modeling software. Newly modeled terrain-rover interactions include the rut-formation effect of deformable soils, using the classical Bekker-Wong implementation of compaction resistances and bull-dozing effects. The paper presents the details and implementation of the model with two case studies based on actual MER telemetry data. In its final form, ARTEMIS will be used in a predictive manner to assess terrain navigability and will become part of the overall effort in path planning and navigation for both Martian and lunar rovers.</jats:p

    Terramechanics Modeling of Mars Surface Exploration Rovers for Simulation and Parameter Estimation

    Full text link
    In 1997 and 2004, small wheeled robots (“rovers”) landed on the surface of Mars to conduct scientific experiments focused on understanding the planet’s climate history, surface geology, and potential for past or present life. Recently, the Mars Exploration Rover (MER) “Spirit” became deeply embedded in regolith at a site called Troy, ending its mission as a mobile science platform. The difficulty faced in navigating mobile robots over sloped, rocky, and deformable terrain has highlighted the importance of developing accurate simulation tools for use in a predictive mobility modeling capacity. These simulation tools require accurate knowledge of terrain model parameters. This paper describes a terramechanics-based tool for simulation of rover mobility. It also describes ongoing work toward estimation of terrain parameters of Mars soil.</jats:p
    corecore