8,497 research outputs found

    Restoring Time Dependence into Quantum Cosmology

    Full text link
    Mini superspace cosmology treats the scale factor a(t)a(t), the lapse function n(t)n(t), and an optional dilation field ϕ(t)\phi(t) as canonical variables. While pre-fixing n(t)n(t) means losing the Hamiltonian constraint, pre-fixing a(t)a(t) is serendipitously harmless at this level. This suggests an alternative to the Hartle-Hawking approach, where the pre-fixed a(t)a(t) and its derivatives are treated as explicit functions of time, leaving n(t)n(t) and a now mandatory ϕ(t)\phi(t) to serve as canonical variables. The naive gauge pre-fix a(t)=consta(t)=const is clearly forbidden, causing evolution to freeze altogether, so pre-fixing the scale factor, say a(t)=ta(t)=t, necessarily introduces explicit time dependence into the Lagrangian. Invoking Dirac's prescription for dealing with constraints, we construct the corresponding mini superspace time dependent total Hamiltonian, and calculate the Dirac brackets, characterized by {n,ϕ}D≠0\{n,\phi\}_D\neq 0, which are promoted to commutation relations in the quantum theory.Comment: Honorable Mentioned essay - Gravity Research Foundation 201

    Cosmological Higgs fields

    Get PDF
    We present a time-dependent solution to the coupled Einstein-Higgs equations for general Higgs-type potentials in the context of flat FRW cosmological models. Possible implications are discussed.Comment: 5 pages, no figures. Version to be published in Phys. Rev. Lett. Changes: references and citations added; introduction partly modified; expanded discussion of relations between parameters in the Higgs potentia

    Topological Defects as Seeds for Eternal Inflation

    Full text link
    We investigate the global structure of inflationary universe both by analytical methods and by computer simulations of stochastic processes in the early Universe. We show that the global structure of the universe depends crucially on the mechanism of inflation. In the simplest models of chaotic inflation the Universe looks like a sea of thermalized phase surrounding permanently self-reproducing inflationary domains. In the theories where inflation occurs near a local extremum of the effective potential corresponding to a metastable state, the Universe looks like de Sitter space surrounding islands of thermalized phase. A similar picture appears even if the state ϕ=0\phi = 0 is unstable but the effective potential has a discrete symmetry ϕ→=−ϕ\phi \to =-\phi. In this case the Universe becomes divided into domains containing different phases. These domains will be separated from each other by domain walls. However, unlike ordinary domain walls, these domain walls will inflate, and their thickness will exponentially grow. In the theories with continuous symmetries inflation generates exponentially expanding strings and monopoles surrounded by thermalized phase. Inflating topological defects will be stable, and they will unceasingly produce new inflating topological defects. This means that topological defects may play a role of indestructible seeds for eternal inflation.Comment: 21 pages, 17 figures (not included), Stanford University preprint SU--ITP--94--

    Inflationary cosmology of the extreme cosmic string

    Full text link
    Starting with a study of the cosmological solution to the Einstein equations for the internal spacetime of an extreme supermassive cosmic string kink, and by evaluating the probability measure for the formation of such a kink in semiclassical approximation using a minisuperspace with the appropriate symmetry, we have found a set of arguments in favor of the claim that the kinked extreme string can actually be regarded as a unbounded chain of pairs of Planck- sized universes. Once one such universe pairs is created along a primordial phase transition at the Planck scale, it undergoes an endless process of continuous self-regeneration driven by chaotic inflation in each of the universes forming the pair.Comment: 15 pages, RevTex, to appear in Int. J. Mod. Phys.

    Inflation and Large Internal Dimensions

    Full text link
    We consider some aspects of inflation in models with large internal dimensions. If inflation occurs on a 3D wall after the stabilization of internal dimensions in the models with low unification scale (M ~ 1 TeV), the inflaton field must be extremely light. This problem may disappear In models with intermediate (M ~10^{11} GeV) to high (M ~ 10^{16} GeV) unification scale. However, in all of these cases the wall inflation does not provide a complete solution to the horizon and flatness problems. To solve them, there must be a stage of inflation in the bulk before the compactification of internal dimensions.Comment: 4 pages, revtex, minor modification

    Inflation with Ω=̞1\Omega \not = 1

    Full text link
    We discuss various models of inflationary universe with Ω=Ìž1\Omega \not = 1. A homogeneous universe with Ω>1\Omega > 1 may appear due to creation of the universe "from nothing" in the theories where the effective potential becomes very steep at large ϕ\phi, or in the theories where the inflaton field ϕ\phi nonminimally couples to gravity. Inflation with Ω<1\Omega < 1 generally requires intermediate first order phase transition with the bubble formation, and with a second stage of inflation inside the bubble. It is possible to realize this scenario in the context of a theory of one scalar field, but typically it requires artificially bent effective potentials and/or nonminimal kinetic terms. It is much easier to obtain an open universe in the models involving two scalar fields. However, these models have their own specific problems. We propose three different models of this type which can describe an open homogeneous inflationary universe.Comment: 29 pages, LaTeX, parameters of one of the models are slightly modifie

    STATIONARY SOLUTIONS IN BRANS-DICKE STOCHASTIC INFLATIONARY COSMOLOGY

    Get PDF
    In Brans-Dicke theory the Universe becomes divided after inflation into many exponentially large domains with different values of the effective gravitational constant. Such a process can be described by diffusion equations for the probability of finding a certain value of the inflaton and dilaton fields in a physical volume of the Universe. For a typical chaotic inflation potential, the solutions for the probability distribution never become stationary but grow forever towards larger values of the fields. We show here that a non-minimal conformal coupling of the inflaton to the curvature scalar, as well as radiative corrections to the effective potential, may provide a dynamical cutoff and generate stationary solutions. We also analyze the possibility of large nonperturbative jumps of the fluctuating inflaton scalar field, which was recently revealed in the context of the Einstein theory. We find that in the Brans--Dicke theory the amplitude of such jumps is strongly suppressed.Comment: 19 pages, LaTe

    Dynamics of Gravitating Magnetic Monopoles

    Get PDF
    According to previous work on magnetic monopoles, static regular solutions are nonexistent if the vacuum expectation value of the Higgs field η\eta is larger than a critical value ηcr\eta_{{\rm cr}}, which is of the order of the Planck mass. In order to understand the properties of monopoles for η>ηcr\eta>\eta_{{\rm cr}}, we investigate their dynamics numerically. If η\eta is large enough (≫ηcr\gg\eta_{{\rm cr}}), a monopole expands exponentially and a wormhole structure appears around it, regardless of coupling constants and initial configuration. If η\eta is around ηcr\eta_{{\rm cr}}, there are three types of solutions, depending on coupling constants and initial configuration: a monopole either expands as stated above, collapses into a black hole, or comes to take a stable configuration.Comment: 11 pages, revtex, postscript figures; results for various initial conditions are added; to appear in Phys. Rev.

    From the Big Bang Theory to the Theory of a Stationary Universe

    Get PDF
    We consider chaotic inflation in the theories with the effective potentials phi^n and e^{\alpha\phi}. In such theories inflationary domains containing sufficiently large and homogeneous scalar field \phi permanently produce new inflationary domains of a similar type. We show that under certain conditions this process of the self-reproduction of the Universe can be described by a stationary distribution of probability, which means that the fraction of the physical volume of the Universe in a state with given properties (with given values of fields, with a given density of matter, etc.) does not depend on time, both at the stage of inflation and after it. This represents a strong deviation of inflationary cosmology from the standard Big Bang paradigm. We compare our approach with other approaches to quantum cosmology, and illustrate some of the general conclusions mentioned above with the results of a computer simulation of stochastic processes in the inflationary Universe.Comment: No changes to the file, but original figures are included. They substantially help to understand this paper, as well as eternal inflation in general, and what is now called the "multiverse" and the "string theory landscape." High quality figures can be found at http://www.stanford.edu/~alinde/LLMbigfigs

    Features of deSitter Vacua in M-Theory

    Full text link
    We compute the masses of all moduli in the unstable deSitter vacua arising in the toy model of cosmological M-theory flux compactifications on the G2 holonomy manifolds of [1]. The slow-roll parameters in the tachyonic directions are shown to be too large to be useful for conventional models of inflation. However, it appears that we can find fast roll regimes which could, under certain conditions, account for the current dark energy driven accelerated expansion of the universe.Comment: 14 pages, 1 figur
    • 

    corecore