8,215 research outputs found

    Tachyonic Quintessential Inflation

    Full text link
    We study the possibility to construct an observationally viable scenario where both early Inflation and the recently detected accelerated expansion of the universe can be explained by using a single scalar field associated with the Tachyon. The Reheating phase becomes crucial to enable us to have a consistent cosmology and also to get a second accelerated expansion period. A discussion using an exponential potential is presented.Comment: 5 pages, Revtex4. Added some references. To be published in Physical Review

    Cosmological Higgs fields

    Get PDF
    We present a time-dependent solution to the coupled Einstein-Higgs equations for general Higgs-type potentials in the context of flat FRW cosmological models. Possible implications are discussed.Comment: 5 pages, no figures. Version to be published in Phys. Rev. Lett. Changes: references and citations added; introduction partly modified; expanded discussion of relations between parameters in the Higgs potentia

    Inflation with TeV-scale gravity

    Full text link
    Allowing for the possibility of large extra dimensions, the fundamental Planck scale MM could be anywhere in the range \TeV\lsim M\lsim \mpl, where \mpl=2.4\times 10^{18}\GeV is the four-dimensional Planck scale. If M\sim\TeV, quantum corrections would not destabilize the Higgs mass even if there were no supersymmetry. But we point out that supersymmetry must in fact be present, if there is an era of cosmological inflation, since during such an era the inflaton mass satisfies m\ll M^2/\mpl=10^{-15}(M/\TeV) and supersymmetry will be needed to protect it. If the inflation hypothesis is accepted, there is no reason to think that Nature has chosen the low value M\sim \TeV, however convenient that choice might have been for the next generation of collider experiments.Comment: 6 pages, to appear in PLB. v3 has Same conclusion stated more precisel

    Inflation and Eternal Inflation

    Get PDF
    The basic workings of inflationary models are summarized, along with the arguments that strongly suggest that our universe is the product of inflation. The mechanisms that lead to eternal inflation in both new and chaotic models are described. Although the infinity of pocket universes produced by eternal inflation are unobservable, it is argued that eternal inflation has real consequences in terms of the way that predictions are extracted from theoretical models. The ambiguities in defining probabilities in eternally inflating spacetimes are reviewed, with emphasis on the youngness paradox that results from a synchronous gauge regularization technique. Vilenkin's proposal for avoiding these problems is also discussed.Comment: 27 pages, including 5 figures, LaTeX (elsart macros for Physics Reports, included). To be published in the David Schramm Memorial Volume of Physics Report

    Topological Defects as Seeds for Eternal Inflation

    Full text link
    We investigate the global structure of inflationary universe both by analytical methods and by computer simulations of stochastic processes in the early Universe. We show that the global structure of the universe depends crucially on the mechanism of inflation. In the simplest models of chaotic inflation the Universe looks like a sea of thermalized phase surrounding permanently self-reproducing inflationary domains. In the theories where inflation occurs near a local extremum of the effective potential corresponding to a metastable state, the Universe looks like de Sitter space surrounding islands of thermalized phase. A similar picture appears even if the state ϕ=0\phi = 0 is unstable but the effective potential has a discrete symmetry ϕ=ϕ\phi \to =-\phi. In this case the Universe becomes divided into domains containing different phases. These domains will be separated from each other by domain walls. However, unlike ordinary domain walls, these domain walls will inflate, and their thickness will exponentially grow. In the theories with continuous symmetries inflation generates exponentially expanding strings and monopoles surrounded by thermalized phase. Inflating topological defects will be stable, and they will unceasingly produce new inflating topological defects. This means that topological defects may play a role of indestructible seeds for eternal inflation.Comment: 21 pages, 17 figures (not included), Stanford University preprint SU--ITP--94--

    Inflation with Ω1\Omega \not = 1

    Full text link
    We discuss various models of inflationary universe with Ω1\Omega \not = 1. A homogeneous universe with Ω>1\Omega > 1 may appear due to creation of the universe "from nothing" in the theories where the effective potential becomes very steep at large ϕ\phi, or in the theories where the inflaton field ϕ\phi nonminimally couples to gravity. Inflation with Ω<1\Omega < 1 generally requires intermediate first order phase transition with the bubble formation, and with a second stage of inflation inside the bubble. It is possible to realize this scenario in the context of a theory of one scalar field, but typically it requires artificially bent effective potentials and/or nonminimal kinetic terms. It is much easier to obtain an open universe in the models involving two scalar fields. However, these models have their own specific problems. We propose three different models of this type which can describe an open homogeneous inflationary universe.Comment: 29 pages, LaTeX, parameters of one of the models are slightly modifie

    Supersymmetric hybrid inflation in the braneworld scenario

    Get PDF
    In this paper we reconsider the supersymmetric hybrid inflation in the context of the braneworld scenario . The observational bounds are satisfied with an inflationary energy scale μ4×104Mp\mu\simeq 4\times 10^{-4}M_p, without any fine-tuning of the coupling parameter, provided that the five-dimensional Planck scale is M5<2×103MpM_5\stackrel{<}{\sim} 2\times 10^{-3}M_p . We have also obtained an upper bound on the the brane tension .Comment: 8 pages (Latex

    Figure of Merit for Dark Energy Constraints from Current Observational Data

    Full text link
    Choosing the appropriate figure of merit (FoM) for dark energy (DE) constraints is key in comparing different DE experiments. Here we show that for a set of DE parameters {f_i}, it is most intuitive to define FoM = 1/\sqrt{Cov(f1,f2,f3,...)}, where Cov(f1,f2,f3,...) is the covariance matrix of {f_i}. The {f_i} should be minimally correlated. We demonstrate two useful choices of {f_i} using 182 SNe Ia (compiled by Riess et al. 2007), [R(z_*), l_a(z_*), \Omega_b h^2] from the five year Wilkinson Microwave Anisotropy Probe (WMAP) observations, and SDSS measurement of the baryon acoustic oscillation (BAO) scale, assuming the HST prior of H_0=72+/-8 km/s Mpc^{-1} and without assuming spatial flatness. We find that the correlation of (w_0,w_{0.5}) [w_0=w_X(z=0), w_{0.5}=w_X(z=0.5), w_X(a) = 3w_{0.5}-2w_0+3(w_0-w_{0.5})a] is significantly smaller than that of (w_0,w_a) [w_X(a)=w_0+(1-a)w_a]. In order to obtain model-independent constraints on DE, we parametrize the DE density function X(z)=\rho_X(z)/\rho_X(0) as a free function with X_{0.5}, X_{1.0}, and X_{1.5} [values of X(z) at z=0.5, 1.0, and 1.5] as free parameters estimated from data. If one assumes a linear DE equation of state, current data are consistent with a cosmological constant at 68% C.L. If one assumes X(z) to be a free function parametrized by (X_{0.5}, X_{1.0}, X_{1.5}), current data deviate from a cosmological constant at z=1 at 68% C.L., but are consistent with a cosmological constant at 95% C.L.. Future DE experiments will allow us to dramatically increase the FoM of constraints on (w_0,w_{0.5}) and of (X_{0.5}, X_{1.0}, X_{1.5}). This will significantly shrink the DE parameter space to enable the discovery of DE evolution, or the conclusive evidence for a cosmological constant.Comment: 7 pages, 3 color figures. Submitte

    Towards a gauge invariant volume-weighted probability measure for eternal inflation

    Full text link
    An improved volume-weighted probability measure for eternal inflation is proposed. For the models studied in this paper it leads to simple and intuitively expected gauge-invariant results.Comment: 16 pages, 3 figs, few misprints corrected, comments adde

    Inflation without Slow Roll

    Full text link
    We draw attention to the possibility that inflation (i.e. accelerated expansion) might continue after the end of slow roll, during a period of fast oscillations of the inflaton field \phi . This phenomenon takes place when a mild non-convexity inequality is satisfied by the potential V(\phi). The presence of such a period of \phi-oscillation-driven inflation can substantially modify reheating scenarios. In some models the effect of these fast oscillations might be imprinted on the primordial perturbation spectrum at cosmological scales.Comment: 9 pages, Revtex, psfig, 1 figure, minor modifications, references adde
    corecore