7 research outputs found

    Uber den Einfluss der Phrenicusexairese auf die Magenfunktion. II. Mitteilung : Experimentelle Studien an Hunden mit Hilfe des Rontgenverfahren

    Get PDF
    Was den Einfluss der Phrenicusexairese auf die Magenfunktion, besonders Magenfunktionsveranderung direkt nach Phrenicusexairese mit Hilfe des Magenkurvenverfahrens anbelangt, hat Verfasser schon in der vorigen Mitteilung berichtet. Er hat weiternoch uber ihre Dauerresultate geforscht. Zur Untersuchung hat er das Rontgenverfahren angewandt, womit er die Bewegungs- und Passagezustande des Inhaltes beobachten konnte. Als Versuchstier hat er erwachsene kleine Hunde gebraucht. Die Resultate sind folgendermassen:- 1. Der Magen verandert seine Form durch den Hochstand infolge gelahmten Zwerchfells, d. h. bei der rechtseitigen Phrenicusexairese wird Pylorus nach oben gezogen und bei der linksseitigen nach links unten. 2. Der Magentonus sinkt deutlich bald nach der Operation ab und zeigt den Zustand von Dilatation und Atonie. Und er stellt sich allmahlich wieder her bis zur Norm und zwar bei einseitiger Exairese nach einigen Wochen, bei beiderseitiger nach einigen Monaten. 3. Die Entleerung des Mageninhalts wird gestort und es verzogert sich der Initialzeitpunkt, in dem der Inhalt den Pylorus passiert, und auch die vollige Entleerungszeit. Diese Storungen zeigen eine allmahliche Wiederherstellung und sie kommen mit der Peristaltik zum normalen erst nach einigen Wochen zuruck. 4. Auch zeigt das Duodenum die Herabsetzung des Tonus und Dilatatation und der Dunndarm zeigt schnelle Passage und schmale Rontgenbilder. (Autoreferat.

    Bulletin mensuel de statistique / Institut national de la statistique et des Ć©tudes Ć©conomiques...

    No full text
    septembre 19941994/09 (N9)

    Universal Stress Protein Regulates Electron Transfer and Superoxide Generation Activities of the Cytochrome <i>bc</i><sub>1</sub> Complex from <i>Rhodobacter sphaeroides</i>

    No full text
    Interactions between <i>Rhodobacter sphaeroides</i> cytochrome <i>bc</i><sub>1</sub> complex (<i>Rsbc</i><sub>1</sub>) and soluble cytosolic proteins were studied by a precipitation pull-down technique. After being purified, detergent-dispersed <i>Rsbc</i><sub>1</sub> complex was incubated with soluble cytosolic fraction and then dialyzed in the absence of detergent; the interacting proteins were coprecipitated with <i>Rsbc</i><sub>1</sub> complex upon centrifugation. One of the cytosolic proteins pulled down by <i>Rsbc</i><sub>1</sub> complex was identified by liquid chromatography-coupled tandem mass spectrometry (LC/MS/MS) to be the reported <i>R. sphaeroides</i> universal stress protein (UspA). Incubating purified UspA with the detergent dispersed <i>bc</i><sub>1</sub> complex resulted in an increase in the <i>Rsbc</i><sub>1</sub> complex activity by 60% and a decrease in superoxide generation activity by the complex by more than 70%. These UspA effects were only observed with <i>Rsbc</i><sub>1</sub> complexes containing subunit IV and assayed under aerobic conditions. These results suggest that the interaction between UspA and <i>Rsbc</i><sub>1</sub> complex may play an important role in <i>R. sphaeroides</i> cells during oxidative stress. Using a biotin label transfer technique, cytochrome <i>c</i><sub>1</sub> of the <i>Rsbc</i><sub>1</sub> complex was identified as the interacting site for UspA

    ERĪ±36, a variant of estrogen receptor Ī±, is predominantly localized in mitochondria of human uterine smooth muscle and leiomyoma cells

    No full text
    <div><p>ERĪ±36 is a naturally occurring, membrane-associated, isoform of estrogen receptor Ī±. The expression of ERĪ±36 is due to alternative splicing and different promoter usage. ERĪ±36 is a dominant-negative effector of ERĪ±66-mediated transactivational activities and has the potential to trigger membrane-initiated mitogenic, nongenomic, estrogen signaling; however, the subcellular localization of ERĪ±36 remains controversial. To determine the cellular localization of ERĪ±36 in estrogen-responsive human uterine smooth muscle (ht-UtSMC) and leiomyoma (fibroid; ht-UtLM) cells, we conducted systematic confocal microscopy and subcellular fractionation analysis using ERĪ±36 antibodies. With Image J colocalizaton analysis plugin, confocal images were analyzed to obtain a Pearsonā€™s Correlation Coefficient (PCC) to quantify signal colocalization of ERĪ±36 with mitochondrial, endoplasmic reticulum, and cytoskeletal components in both cell lines. When cells were double-stained with an ERĪ±36 antibody and a mitochondrial-specific dye, MitoTracker, the PCC for the two channel signals were both greater than 0.75, indicating strong correlation between ERĪ±36 and mitochondrial signals in the two cell lines. A blocking peptide competition assay confirmed that the mitochondria-associated ERĪ±36 signal detected by confocal analysis was specific for ERĪ±36. In contrast, confocal images double-stained with an ERĪ±36 antibody and endoplasmic reticulum or cytoskeletal markers, had PCCs that were all less than 0.4, indicating no or very weak signal correlation. Fractionation studies showed that ERĪ±36 existed predominantly in membrane fractions, with minimal or undetected amounts in the cytosol, nuclear, chromatin, and cytoskeletal fractions. With isolated mitochondrial preparations, we confirmed that a known mitochondrial protein, prohibitin, was present in mitochondria, and by co-immunoprecipitation analysis that ERĪ±36 was associated with prohibitin in ht-UtLM cells. The distinctive colocalization pattern of ERĪ±36 with mitochondria in ht-UtSMC and ht-UtLM cells, and the association of ERĪ±36 with a mitochondrial-specific protein suggest that ERĪ±36 is localized primarily in mitochondria and may play a pivotal role in non-genomic signaling and mitochondrial functions.</p></div

    Comparison of ERĪ±36 and ERĪ±66 domain structures and subcellular ERĪ±36 staining patterns in human uterine smooth muscle (ht-UtSMC) and leiomyoma cells (ht-UtLM).

    No full text
    <p>(A) The top structure shows six conserved domains of ERĪ±66 (labeled A-F), the amino acid sequence numbers, and the transactivation function domains (AF-1 and AF-2). The function of each domain is indicated. In the domain structure of ERĪ±36, the last unique 27 amino acids of ERĪ±36 are indicated as a filled box. The diagram is drawn proportionally to domain size. The drawing is based on the publication by Wang et. al., 2005 and GenBank entry CAE45969.1. (B) In ht-UtSMC cells (1), distinctive ERĪ±36 signals were detected along the plasma membrane as shown by the arrow, but mostly localized within a robust intracytoplasmic network. In ht-UtLM cells (2), the ERĪ±36 signals were detected mostly in a robust network structure within the cytoplasm. The cell samples were stained with ERĪ±36 antibody and DAPI.</p

    ERĪ±36 Expression in subcellular fractions.

    No full text
    <p>Cellular Fraction Abbreviations: CE (cytoplasmic extract); ME (membrane extract); CB (chromatin-bound extract); NE (nuclear extract, nuclear soluble); PE (pellet extract, cytoskeleton); T (total cellular protein extract).</p

    Interactions of ERĪ±36 and prohibitin in human uterine leiomyoma cells.

    No full text
    <p>The interactions between ERĪ±36 and prohibitin were determined with a co-immunoprecipitation (Co-IP). Ht-UtLM cells were treated with vehicle control, 10<sup>āˆ’8</sup> M E<sub>2</sub>, and 10<sup>āˆ’6</sup> M E<sub>2</sub> for 24 hours. The blots presented are representative results that were repeated at least three times. PHB: prohibitin; IB: Immunobotting; IP: Immunoprecipitation.</p
    corecore