13 research outputs found

    Phenotypes Conferred by Wheat Multiple Pathogen Resistance Locus, Sr2, Include Cell Death in Response to Biotic and Abiotic Stresses

    No full text
    The wheat Sr2 locus confers partial resistance to four biotrophic pathogens: wheat stem rust (Puccinia graminis f. sp. tritici), leaf rust (P. triticina), stripe rust (P. striiformis f. sp. tritici), and powdery mildew (Blumeria graminis f. sp. tritici). In addition, Sr2 is linked with a brown coloration of ears and stems, termed pseudo-black chaff (PBC). PBC, initially believed to be elicited by stem rust infection, was subsequently recognized to occur in the absence of pathogen infection. The current study demonstrates that the resistance response to stem rust is associated with the death of photosynthetic cells around rust infection sites in the inoculated leaf sheath. Similarly, Sr2-dependent resistance to powdery mildew was associated with the death of leaf mesophyll cells around mildew infection sites. We demonstrate that PBC occurring in the absence of pathogen inoculation also corresponds with death and the collapse of photosynthetic cells in the affected parts of stems and ears. In addition, Sr2-dependent necrosis was inducible in leaves by application of petroleum jelly or by heat treatments. Thus, Sr2 was found to be associated with cell death, which could be triggered by either biotic or abiotic stresses. Our results suggest a role for the Sr2 locus in controlling cell death in response to stress.This project was supported by the Grains Research Development Corporation

    Sulphur and nitrogen nutrition influence the response of chickpea seeds to an added, transgenic sink for organic sulphur

    No full text
    In order to increase the concentration of the nutritionally essential sulphur amino acids in seed protein, a transgene encoding a methionine- and cysteine-rich protein, sunflower seed albumin (SSA), was transferred to chickpeas (Cicer arietinum L). Transgenic seeds that accumulated SSA contained more methionine and less oxidized sulphur than the controls, suggesting that additional demand for sulphur amino acids from the expression of the transgene stimulated sulphur assimilation. In addition, the activity of trypsin inhibitors, a known family of endogenous, sulphur-rich chickpea seed proteins, was diminished in transgenic, SSA-containing seeds compared with the non-transgenic controls. Together, these results indicate that the reduced sulphur sequestered into SSA was supplied partly by additional sulphur assimilation in the developing transgenic seeds, and partly by some diversion of sulphur amino acids from endogenous seed proteins. Growth of chickpeas on nutrient with a high sulphur-to-nitrogen ratio increased the total seed sulphur content and the accumulation of sulphur amino acids in the seeds, and partly mitigated the effect of SSA accumulation on the trypsin inhibitor amount. The results suggest that free methionine and O-acetylserine (OAS) acted as signals that modulated chickpea seed protein composition in response to the variation in sulphur demand, as well as in response to variation in the nitrogen and sulphur status of the plant

    Sulphur and nitrogen nutrition influence the response of chickpea seeds to an added, transgenic sink for organic sulphur

    No full text
    In order to increase the concentration of the nutritionally essential sulphur amino acids in seed protein, a transgene encoding a methionine- and cysteine-rich protein, sunflower seed albumin (SSA), was transferred to chickpeas (Cicer arietinum L). Transgenic seeds that accumulated SSA contained more methionine and less oxidized sulphur than the controls, suggesting that additional demand for sulphur amino acids from the expression of the transgene stimulated sulphur assimilation. In addition, the activity of trypsin inhibitors, a known family of endogenous, sulphur-rich chickpea seed proteins, was diminished in transgenic, SSA-containing seeds compared with the nontransgenic controls. Together, these results indicate that the reduced sulphur sequestered into SSA was supplied partly by additional sulphur assimilation in the developing transgenic seeds, and partly by some diversion of sulphur amino acids from endogenous seed proteins. Growth of chickpeas on nutrient with a high sulphur-to-nitrogen ratio increased the total seed sulphur content and the accumulation of sulphur amino acids in the seeds, and partly mitigated the effect of SSA accumulation on the trypsin inhibitor amount. The results suggest that free methionine and O-acetylserine (OAS) acted as signals that modulated chickpea seed protein composition in response to the variation in sulphur demand, as well as in response to variation in the nitrogen and sulphur status of the plant

    Accumulation of a sulphur-rich seed albumin from sunflower in the leaves of transgenic subterranean clover, (Trifolium subterranean L.)

    No full text
    A gene encoding a sulphur-rich, sunflower seed albumin (23% cysteine plus methionine) was modified to contain the promoter for the 35S RNA of cauliflower mosaic virus, in order to obtain leaf expression in transgenic plants. In addition, a sequence encoding an endoplasmic reticulum-retention signal was added to the 3’ end of the coding region so as to stabilize the protein by diverting it away from the vacuole. The modified gene was introduced into subterranean clover (T. subterraneum L.) and its expression was detected by northern and western blots and by immunogold localization. The albumin was accumulated in the lumen of the endoplasmic reticulum, and, among six independent, transformed lines, it accumulated in the leaves of T₀ transgenic plants at varying levels up to 0.3% of the total extractable protein. The level of accumulation of the sunflower albumin increased with increasing leaf age, and in the older leaves of the most highly expressing plants of the T₁ generation it reached 1.3% of total extractable protein. Expression of the SSA gene was stable in the first and second generation progeny. These results indicate that there is potential for significantly improving the nutritional value of subterranean clover for ruminant animals such as sheep by expressing genes that code for sulphur-rich, rumen-stable proteins in leaves.M. Rafiqul, I. Khan, Aldo Ceriotti, Linda Tabe, Arun Aryan, Warren McNabb, Andrew Moore, Stuart Craig, Donald Spencer, Thomas J. V. Higgin

    Transgenic chickpea seeds expressing high levels of a bean a-amylase inhibitor

    No full text
    We describe a robust and reproducible Agrobacterium-mediated chickpea transformation method based on kanamycin selection, and its use to introduce the bean AI1 gene into a desi type of chickpea. Bean AI1 was specifically expressed in the seeds, accumulated up to 4.2% of seed protein and was processed to low molecular weight polypeptides as occurs in bean seeds. The transgenic protein was active as an inhibitor of porcine a-amylase in vitro. Transgenic chickpeas containing a-AI1 strongly inhibited the development of Callosobruchus maculatus and C. chinensis in insect bioassays

    Transgenic Pea Seeds Expressing the α-Amylase Inhibitor of the Common Bean are Resistant to Bruchid Beetles

    No full text
    5 pages, figures, and tables statistics.Infestations of stored legume seeds by bruchid beetles, such as the cowpea weevil and the Azuki bean weevil cause substantial economic and nutritional losses of these food crops, especially in developing countries.Peer reviewe
    corecore