21 research outputs found

    Alliance Partition Number in Graphs

    Get PDF
    Ars Combinatoria, 103 (2012), pp. 519-529 (accepted 2007)

    Metric dimension and zero forcing number of two families of line graphs

    Get PDF
    summary:Zero forcing number has recently become an interesting graph parameter studied in its own right since its introduction by the “AIM Minimum Rank–Special Graphs Work Group”, whereas metric dimension is a well-known graph parameter. We investigate the metric dimension and the zero forcing number of some line graphs by first determining the metric dimension and the zero forcing number of the line graphs of wheel graphs and the bouquet of circles. We prove that Z(G)2Z(L(G))Z(G) \le 2Z(L(G)) for a simple and connected graph GG. Further, we show that Z(G)Z(L(G))Z(G) \le Z(L(G)) when GG is a tree or when GG contains a Hamiltonian path and has a certain number of edges. We compare the metric dimension with the zero forcing number of a line graph by demonstrating a couple of inequalities between the two parameters. We end by stating some open problems

    Domination in Functigraphs

    Get PDF
    Let G1G_1 and G2G_2 be disjoint copies of a graph GG, and let f:V(G1)V(G2)f: V(G_1) \rightarrow V(G_2) be a function. Then a \emph{functigraph} C(G,f)=(V,E)C(G, f)=(V, E) has the vertex set V=V(G1)V(G2)V=V(G_1) \cup V(G_2) and the edge set E=E(G1)E(G2){uvuV(G1),vV(G2),v=f(u)}E=E(G_1) \cup E(G_2) \cup \{uv \mid u \in V(G_1), v \in V(G_2), v=f(u)\}. A functigraph is a generalization of a \emph{permutation graph} (also known as a \emph{generalized prism}) in the sense of Chartrand and Harary. In this paper, we study domination in functigraphs. Let γ(G)\gamma(G) denote the domination number of GG. It is readily seen that γ(G)γ(C(G,f))2γ(G)\gamma(G) \le \gamma(C(G,f)) \le 2 \gamma(G). We investigate for graphs generally, and for cycles in great detail, the functions which achieve the upper and lower bounds, as well as the realization of the intermediate values.Comment: 18 pages, 8 figure

    On Metric Dimension of Functigraphs

    Full text link
    The \emph{metric dimension} of a graph GG, denoted by dim(G)\dim(G), is the minimum number of vertices such that each vertex is uniquely determined by its distances to the chosen vertices. Let G1G_1 and G2G_2 be disjoint copies of a graph GG and let f:V(G1)V(G2)f: V(G_1) \rightarrow V(G_2) be a function. Then a \emph{functigraph} C(G,f)=(V,E)C(G, f)=(V, E) has the vertex set V=V(G1)V(G2)V=V(G_1) \cup V(G_2) and the edge set E=E(G1)E(G2){uvv=f(u)}E=E(G_1) \cup E(G_2) \cup \{uv \mid v=f(u)\}. We study how metric dimension behaves in passing from GG to C(G,f)C(G,f) by first showing that 2dim(C(G,f))2n32 \le \dim(C(G, f)) \le 2n-3, if GG is a connected graph of order n3n \ge 3 and ff is any function. We further investigate the metric dimension of functigraphs on complete graphs and on cycles.Comment: 10 pages, 7 figure

    Global Alliance Partition in Trees

    Get PDF
    J. Combin. Math. Combin Comput. 66 (2008), 161-16

    Closed 3-stop Center and Periphery in Graphs

    Get PDF
    Acta Mathematica Sinica, English Series Vol 28 No. 3 (2012)The article of record as published may be located at http://dx.doi.org/10.1007/s10114-011-0187-
    corecore