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Abstract A delivery person must leave the central location of the business, deliver packages at a

number of addresses, and then return. Naturally, he/she wishes to reduce costs by finding the most

efficient route. This motivates the following:

Given a set of k distinct vertices S = {x1, x2, . . . , xk} in a simple graph G, the closed k-stop-distance

of set S is defined to be

dk(S) = min
θ∈P(S)

(d(θ(x1), θ(x2)) + d(θ(x2), θ(x3)) + · · · + d(θ(xk), θ(x1))),

where P(S) is the set of all permutations of S. That is the same as saying that dk(S) is the length of

a shortest closed walk through the vertices {x1, . . . , xk}.
The closed 2-stop distance is twice the standard distance between two vertices. We study the closed

k-stop center and closed k-stop periphery of a graph, for k = 3.

Keywords Central appendage number, peripheral appendage number, Steiner distance

MR(2000) Subject Classification 05C12, 05C40, 05C07

1 Definitions and Introduction

In this paper, all graphs are simple (i.e., no loops or multiple edges). For vertices u and

v of a graph G, let d(u, v) denote the standard distance from u to v (i.e., the length of a

shortest path from u to v). Let G = (V (G), E(G)) be a graph of order n (|V (G)| = n)

and size m (|E(G)| = m). Let x ∈ V (G). Recall that the eccentricity e(x) of a vertex x is

maxv∈V (G),v �=x d(x, v).

Let G and H be two graphs. The join of G and H, namely G + H, is the graph with

V (G + H) = V (G) ∪ V (H) and E(G + H) = E(G) ∪ E(H) ∪ {uv : ∀u ∈ V (G), ∀ v ∈ V (H)}.
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The disjoint union of G and H, namely G ∪ H, is the graph whose V (G ∪ H) = V (G) ∪ V (H)

and E(G ∪ H) = E(G) ∪ E(H).

The closed k-stop distance of a set with k vertices S = {x1, x2, x3,. . . , xk} (k ≥ 2) in a

connected graph G is defined to be

dk(S) = min
θ∈P(S)

(d(θ(x1), θ(x2)) + d(θ(x2), θ(x3)) + · · · + d(θ(xk), θ(x1))),

where P(S) is the set of all permutations of S and xi �= xj , 1 ≤ i, j ≤ k. This concept

was introduced in [1] and expanded in [2]. That is the same as saying that dk(x1, x2, . . . , xk)

is the length of a shortest closed walk through the vertices x1, x2, . . . , xk. The closed k-stop

eccentricity ek(x) of a vertex x in a connected graph G is max {dk(S)|x ∈ S,S ⊆ V (G), |S| = k}.
For a connected graph G, the minimum closed k-stop eccentricity among the vertices of G

is the closed k-stop radius, that is, radk(G) = minx∈V (G) ek(x). The maximum closed k-

stop eccentricity among the vertices of G is the closed k-stop diameter, that is, diamk(G) =

maxx∈V (G) ek(x). Equivalently, diamk(G) = max{dk(S) | S ⊆ V(G), |S| = k}. For our purposes,

the definition based on the k-stop eccentricities is more useful.

Note that if k = 2, then d2({x1, x2}) = 2d(x1, x2). We thus consider k ≥ 3. In particular,

the closed 3-stop distance of x, y and z (x �= y, x �= z, y �= z) is

d3({x, y, z}) = d(x, y) + d(y, z) + d(z, x).

For simplicity, we will write d3(x, y, z) instead of d3({x, y, z}).
The closed 3-stop eccentricity e3(x) of a vertex x in a connected graph G is the maximum

closed 3-stop distance of a set of three vertices containing x, that is,

e3(x) = max
y,z∈V (G)

(d(x, y) + d(y, z) + d(z, x)).

The minimum closed 3-stop eccentricity among the vertices of G is the closed 3-stop radius,

that is, rad3(G) = minx∈V (G) e3(x). The maximum closed 3-stop eccentricity among the vertices

of G is the closed 3-stop diameter, that is, diam3(G) = maxx∈V (G) e3(x).

The center C(G) of G is the subgraph induced by those vertices of G having minimum

eccentricity. For more on standard center of a graph we refer the reader to [3] and [4]. The closed

3-stop center C3(G) of G is the subgraph induced by those vertices of G having minimum closed

3-stop eccentricity [2]. For a given graph G, if there exists a graph H such that C3(H) ∼= G, we

define the closed 3-stop central appendage number of a graph G, AC3(G), to be the minimum

difference |V (H)| − |V (G)| over all graphs H such that C3(H) ∼= G. For more on standard

central appendage number of a graph we refer the reader to [5].

The periphery P (G) of a graph G is the subgraph induced by the vertices having maximum

eccentricity. For more on standard periphery of a graph we refer the reader to [3, 6] and [7]. The

closed 3-stop periphery P3(G) of G is the subgraph induced by the vertices having maximum

closed 3-stop eccentricities [2]. For a given graph G, if there exists a graph H such that

P3(H) ∼= G, we define the closed 3-stop peripheral appendage number of G, AP3(G), to be the

minimum difference |V (H)| − |V (G)| over all graphs H such that P3(H) ∼= G. For more on

standard peripheral appendage number of a graph we refer the reader to [8] and [9].
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When more than one graph is discussed, such as G and H, we use the notation dG
3 (x, y, z)

and eG
3 (x) to represent the closed 3-stop distance of x, y and z and the closed 3-stop eccentricity

of x, respectively, in the graph G, and dH
3 (x, y, z) and eH

3 (x) for the corresponding distance and

eccentricity in H.

Recall that the Steiner distance of a set S of vertices is the number of edges in a minimum

connected subgraph containing all of the vertices in S. The closed k-stop distance can be viewed

as an alternative method of defining distance for a set of vertices. For references on Steiner

distance, see [10–14]. The relationship between Steiner distance and closed k-stop distance was

explored in [2].

For other graph theory terminology we refer the reader to [15]. In this paper we study the

closed 3-stop central appendage number and the closed 3-stop peripheral appendage number.

We end this section with the following propositions that have appeared in [2] and which

will be used in this paper.

Proposition A Let G be a connected graph of order at least 3. Then

|V (P3(G))| ≥ 3.

Proposition B For any connected graph G, we have

rad3(G) ≤ diam3(G) ≤ 3
2
rad3(G).

Observation C If u and v are adjacent vertices in a connected graph, then

|e3(u) − e3(v)| ≤ 2.

For the rest of the paper we consider graphs with at least 3 vertices.

2 The Closed 3-stop Peripheral Appendage Number

We start with the closed 3-stop peripheral appendage number. This number is zero if and only if

G is its own closed 3-stop periphery, i.e., G is closed 3-stop self-peripheral. This occurs exactly

when every vertex of G has the same closed 3-stop eccentricity, so a closed 3-stop self-peripheral

graph is also closed 3-stop self-centered, that is, the graph is its own closed 3-stop center.

Recall that a graph G is vertex-transitive if for every pair of vertices u, v ∈ V (G), there is

an automorphism of V (G) which maps u to v.

Observation 2.1 If G is connected and vertex-transitive, then G is closed 3-stop self-centered

and closed 3-stop self-peripheral.

However, if some vertex v in G has e3(v) ≤ 4 and G is not a closed 3-stop self-peripheral

graph, then G is not the closed 3-stop periphery of any supergraph H. To see this, first notice

that G cannot be a complete graph. Also since G is not complete, for all x ∈ V (H)−V (G), we

will have eH
3 (x) ≥ 4, while there exists v ∈ G such that eH

3 (v) ≤ 4 in the supergraph H. Thus,

we may assume that rad3(G) ≥ 5.

The next three propositions characterize the graphs G with rad3(G) ≥ 5 for which the

closed 3-stop peripheral appendage number is defined. Recall that for a vertex u ∈ V (G),
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the open neighborhood of u is N(u) = {v : uv ∈ E(G)} and the closed neighborhood of u is

N [u] = N(u) ∩ {u}.
Proposition 2.2 Assume that rad3(G) ≥ 5. Suppose that either (1) for every vertex v in G,

the vertices of V (G)−N [v] induce a complete graph, or (2) for every vertex v in G, V (G)−N [v]

contains two nonadjacent vertices. Then G is the closed 3-stop periphery of some graph H, with

AP3(G) ∈ {0, 1}, both being realizable.

Proof First, suppose that for every v ∈ V (G), the subgraph induced by V (G)−N [v] contains

two non-adjacent vertices. Let H be the graph obtained from G, H = K1 + G, by adding one

extra vertex x that forms the K1. Then eH
3 (x) = 4, and eH

3 (y) = 6, for all y ∈ V (G).

Suppose now that for every vertex u ∈ V (G), the vertices in V (G)−N [u] induce a complete

graph. Since this is true for every vertex in G, the standard diam(G) ≤ 3. Since rad3(G) ≥ 5,

it follows that |V (G) − N [u]| �= ∅ for all u ∈ V (G). We can conclude that diam(G) is either 2

or 3. First, suppose diam(G) = 2. Let u be an arbitrary vertex in V (G). If there is exactly one

vertex in V (G)−N [u], it is not adjacent to every vertex of N(u); otherwise, e3(u) = 4. Consider

H = G + K1, with a new vertex x corresponding to K1. Then eH
3 (x) = 4. We now show that

eH
3 (u) = 5 for every u ∈ V (G). If v, w ∈ N(u), then dH

3 (u, v, w) ≤ 4. If v, w ∈ V (G) − N [u],

then dH
3 (u, v, w) = 5. If v ∈ N(u) and w ∈ V (G) − N [u], then dH

3 (u, v, w) is either 4 or 5,

depending on whether v and w are adjacent. (Note that d(v, w) ≤ diam(G) = 2.) If either v or

w equals x, then dH
3 (u, v, w) is 3 or 4. Thus, eH

3 (u) = 5 for every u ∈ V (G).

Now, consider the case that for every vertex u ∈ V (G), the vertices in V (G)− N [u] induce

a complete graph, and diam(G) = 3. Let u and v be two vertices of G such that dG(u, v) = 3.

Since N [u] ⊆ V (G)−N [v], it follows that N [u] must induce a complete graph. Similarly, N [v]

must induce a complete graph, N [u] ∪ N [v] = V (G), and N [u] ∩ N [v] = ∅. Let H = G + K1,

and label the new vertex x. Then eH
3 (x) = 4. If w is any vertex other than u, v and x,

then w is adjacent to x and exactly one of u and v, so dH
3 (u, v, w) = 5. It follows that

dH
3 (u) = dH

3 (v) = dH
3 (w) = 5.

A class with AP3(G) = 0 is Pn, with n ≥ 3, and a class AP3(G) = 1 is an extended star,

formed by subdividing each edge of K1,n, with n ≥ 3. Notice that Pn satisfies hypothesis (2)

for n ≥ 6 and the extended star satisfies hypothesis (2) for n ≥ 3. A class which satisfies

hypothesis (1) and has AP3(G) = 0 is formed by starting with a complete graph on at least 5

vertices and removing the edges of a hamiltonian cycle. A class which satisfies (1) and has

AP3(G) = 1 is formed by starting with two complete graphs Kr and Ks with r ≥ 2 and s ≥ 3

and joining a vertex of Kr with at least one and at most s − 2 vertices of Ks. �
Notice that in a connected graph G if v is a vertex such that V (G)−N [v] induces a complete

graph, then the standard eccentricity of v is at most 3.

Proposition 2.3 Suppose that G is a graph with diam3(G) > rad3(G) ≥ 5. Furthermore,

suppose that G contains at least one vertex v such that V (G) − N [v] induces a complete graph

and e(v) ≤ 2, and at least one vertex u such that V (G) − N [u] contains a pair of nonadjacent

vertices. Then G is not the closed 3-stop periphery of any supergraph H.
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Proof Suppose, to the contrary, that G is the closed 3-stop periphery of some supergraph H.

Claim 1 eH
3 (v) ≤ 5.

In the graph G, eG
3 (v) ≤ 6. For eH

3 (v) to be larger than eG
3 (v), there would have to be

vertices in V (H) − V (G) with the same closed 3-stop eccentricity as v, which contradicts G

being the closed 3-stop periphery of H.

Furthermore, if eG
3 (v) = 6, then there must be vertices t and s in V (G) such that d(v, t) = 2,

d(v, s) = 1, and d(t, s) = 3. If eH
3 (v) = 6, then there must exist vertices t′ and s′ in V (G) such

that d(v, t′) = 2, d(v, s′) = 1, and d(t′, s′) = 3 in H as well as in G. Let x ∈ V (H) − V (G).

If x is adjacent to both s′ and t′, then d(s′, t′) is reduced to 2. Otherwise, d3(x, s′, t′) =

d(x, s′)+d(s′, t′)+d(t′, x) ≥ 2d(s′, t′) ≥ 6, which implies that e3(x) ≥ 6 = e3(v) and contradicts

the fact that v ∈ P3(H) and x �∈ P3(H). Thus, we may assume that e3(v) ≤ 5 in H, and hence,

eH
3 (x) ≤ 4 for all x ∈ V (H) − V (G).

Claim 2 Every x ∈ V (H) − V (G) is adjacent to every y ∈ V (G).

Suppose there is a vertex x ∈ V (H) − V (G) and a vertex y ∈ V (G) such that x and y

are not adjacent in H. Since rad3(G) ≥ 5, there must be some vertex z in V (G) which is

not adjacent to y. Thus, dH
3 (x, y, z) = dH(x, y) + dH(y, z) + dH(z, x) ≥ 5. This contradicts

eH
3 (x) ≤ 4. Therefore, we may assume that every vertex x ∈ V (H)−V (G) is adjacent to every

vertex y ∈ V (G).

Finally, consider the vertex u in V (G) such that V (G) − N [u] contains two vertices q and

r which are not adjacent in G. In H, dH
3 (u, q, r) = 6. Thus, eH

3 (u) > eH
3 (v), so v cannot be in

the closed 3-stop periphery of H. This is a contradiction. �

We have the following partial result for the remaining cases.

Proposition 2.4 Suppose that G is a graph with diam3(G) > rad3(G) ≥ 5. Furthermore,

suppose that G contains at least one vertex u such that V (G)−N [u] contains a pair of nonad-

jacent vertices and at least one vertex v such that V (G) − N [v] induces a complete graph, but

e(v) = 3. Let A = {w ∈ V (G) − N [v] | d(v, w) = 2}, B = {w ∈ V (G) − N [v] | d(v, w) = 3},
C = {c ∈ N(v)|There is some w �∈ N [v] such that wc ∈ E(G)}, and D = N(v) − C. If there

exists a ∈ A such that d(a, d) = 2 for all d ∈ D, then G is not the closed 3-stop periphery of

any supergraph H. Otherwise, AP3(G) ∈ {0, 1, 2}.
Proof Suppose G has vertices u and v as described above and suppose G is P3(H) for some

H, with G ⊆ H. Each y ∈ V (G) must have 3-stop eccentricity diam3(H) in H.

Claim 1 First we will show that diam3(H) = 7 and rad3(H) = 6 and that G contains a

subgraph isomorphic to G0, with V (G0) = {a, b, c, d, e} and E(G0) = {ab, bc, ac, cd, de}.
Let q and r be non-adjacent vertices in V (G)−N [u]. Then, since none of u, q, or r is adjacent

in G or in H, eH
3 (u) ≥ 6. Now, consider v. Define sets A and B as above. Given any two

vertices s and t in N [v] ∪ A, d3(v, s, t) ≤ 6. If s ∈ A and t ∈ B, then d3(v, s, t) = 6. If s, t ∈ B,

then d3(v, s, t) = 7. If s ∈ N [v] and t ∈ B, then d3(v, s, t) ≤ 8. Thus, diam3(H) ∈ {6, 7, 8}.
Let s and t be vertices such that eH

3 (v) = diam3(H) = d3(v, s, t) ≥ 6. Thus, dH(v, s) +
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dH(s, t)+dH(t, v) ≥ 6. These distances cannot all be 2, since if s and t are both in V (G)−N [v],

then they would be adjacent to each other. At least one of these three distances must be 3.

It follows that, given x ∈ V (H) − V (G), x cannot be adjacent to every vertex in V (G). If,

for example, dH(s, t) ≥ 3, then x could be adjacent to at most one of s and t, say s, and

d3(x, s, t) = d(x, s) + d(s, t) + d(t, x) ≥ 1 + 3 + 2 = 6. The other cases are similar. We have

e3(x) ≥ 6. Since x is not in P3(H), diam3(H) ≥ 7.

Furthermore, since dH
3 (v, s, t) = diam3(v, s, t) ≥ 7, either s and t are both in B or without

loss of generality s ∈ N [v] and t ∈ B. Suppose that s and t are both in B. There is a

v-s path of length 3 in G, say v, q, r, s. Since r and t ∈ V (G) − N [v], r and s are both

adjacent to t, and {v, q, r, s, t} induces a subgraph isomorphic to G0. Notice that in this case,

eH
3 (v) = 7 = diam3(H), so eH

3 (x) = rad3(H) must be 6.

Suppose that s ∈ N [v] and t ∈ B. Then dH(v, s) = 1 and dH(v, t) = 3. We must have

dH(s, t) = 3 or 4. If dH(s, t) = 4, then d3(x, s, t) = dH(x, s)+dH(s, t)+dH(t, x) ≥ 2dH(s, t) = 8,

which is not possible. Thus, dH(s, t) = 3 and dH(v, t) = 3. Again in this case, diam3(H) = 7

and rad3(H) must be 6. Consider a shortest s-t path, s, q, r, t. Notice that q must be in N [v],

since otherwise, q would be adjacent to t, and q cannot be v, since dH(v, t) = 3. Thus, both q

and s are adjacent to v, and {v, s, q, r, t} induces a subgraph isomorphic to G0.

Claim 2 Next we show that, for every vertex x ∈ V (H)− V (G), there is at least one vertex

in V (G) not adjacent to x in H. If V (H)− V (G) = {x}, then there are at least two vertices in

V (G) not adjacent to x in H, but any two vertices in V (G) not adjacent to x must be within

distance 2 of each other.

Since there must be vertices s, t ∈ V (G) such that dH(s, t) = 3, it follows that for any

vertex x ∈ V (H) − V (G), there is at least one vertex, say w ∈ V (G), not adjacent to x.

Suppose V (H) − V (G) = {x}. If x is not adjacent to any vertex in N(w) ∩ V (G), then since

eH
3 (x) = 6, every vertex of H must lie on some x-w geodesic. But then eH

3 (w) = 6, which

is a contradiction. Thus, x is adjacent to some z ∈ V (G) such that z is adjacent to w. If

x is adjacent to every vertex of V (G) except for w, we would have eH
3 (z) ≤ 6, which is a

contradiction. There must be another vertex y ∈ V (G) which is not adjacent to x in H. Now,

6 = eH
3 (x) ≥ dH

3 (x, y, w) = 2+d(y, w)+2, so d(y, w) ≤ 2. Thus, y and w are either adjacent or

share a common neighbor in G. If they share a common neighbor, such as z, then there must

be a third vertex not adjacent to x which is not adjacent to z.

Define sets A, B, C, and D as in the statement of the proposition. Suppose, for all a ∈ A,

there exists d ∈ D such that d(a, d) = 3. Notice that D �= ∅ and that for every c ∈ C,

there must exist d ∈ D such that cd �∈ E(G). Define H by V (H) = V (G) ∪ {x, x′} and

E(H) = E(G) ∪ {xy|y ∈ N [v]} ∪ {x′y|y ∈ C ∪ A ∪ B} ∪ {xx′}. Then eH
3 (x) = eH

3 (x′) = 6.

Notice that dH
3 (b, c, d) = 7 for every b ∈ B, c ∈ C and d ∈ D with cd �∈ E(G), dH

3 (v, b, d) = 7 for

every b ∈ B and d ∈ D, and dH
3 (a, b, d) = 7 for every a ∈ A, b ∈ B and d ∈ D with d(a, d) > 2.

We have eH
3 (y) = 7 for every y ∈ V (G).

However, if there exists a ∈ A with d(a, d) = 2 for all d ∈ D, then eH
3 (a) ≤ 6. This
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contradicts the fact that eH
3 (x) = diam3(H) = 7 for all x ∈ V (G) (see Claim 1). �

We have seen examples of classes with AP3(G) equal to 0 or 1. We now show that AP3(G)

= 2 from Proposition 2.4 is realizable. Let G be the graph with V (G) = {v, v′, w, w′, y, y′, u}
and E(G) = {vw′, vy′, w′y′, vu, v′u, v′w, v′y, wy} (see Figure 1). We claim that AP3(G) = 2.

First, we calculate eG
3 (v) = eG

3 (u) = eG
3 (v′) = 8 and eG

3 (w) = eG
3 (y) = eG

3 (w′) = eG
3 (y′)

= 9, so AP3(G) ≥ 1. Suppose AP3(G) = 1, with V (H) − V (G) = {x}. From the proof of

Proposition 2.4, there must be at least two vertices not adjacent to x, and any two vertices not

adjacent to x must be at distance at most two in G. Since by the proof of Proposition 2.4,

eH
3 (v) = 7, at least one of v, w, and y is not adjacent to x. Similarly, at least one of v′, w′, and

y′ is not adjacent to x. If v and v′ are both not adjacent to x, then w, y, w′ and y′ must all

be adjacent to x, since each one is distance 3 from one of v and v′. But then eH
3 (u) ≤ 6, which

is not possible. The only other possibility, without loss of generality, is that v′, w, and y are

not adjacent to x, while v, w′ and y′ are all adjacent to x. But then eH
3 (x) ≥ dH

3 (x, y, y′) ≥ 8,

which is also not possible.

G :

�

y′

�w
′

�v �u �v′

�

y

�w

�
��

�
�� �

��

�
��

Figure 1 A graph G with AP3(G) = 2

Now, consider the graph H formed by adding two vertices x and x′ to G. Add edges

{xx′, xv, xw′, xy′, xu, x′v′, x′w, x′y, x′u}. Notice that in H, e3(x) = e3(x′) = 6, while every

other vertex has 3-stop eccentricity 7.
We next show that it is possible to have the closed 3-stop periphery and the standard

periphery as P3(G) ⊆ P (G), or P (G) ⊆ P3(G), or even P (G) ∩ P3(G) = ∅. For instance, for a

path, P (G) ⊆ P3(G). A C6 with a pendant edge and vertex added to each of three nonadjacent

vertices has P3(G) ⊆ P (G).

Proposition 2.5 Let F be a graph with at least two components and let G be a graph with

at least three components. Then for every integer k ≥ 3, there exists a connected graph H such

that P (H) ∼= F , P3(H) ∼= G, and d(P (H), P3(H)) = k + 3.

Proof Let V (G) = {x0, x1, x2, x
′
0, x

′
1, x

′
2, u, v, w} ∪ {ui, u

′
i, vi, v

′
i, wi, w

′
i | 1 ≤ i ≤ k − 1} ∪

{uk, vk, wk} and let E(G) = {x0x1, x1x2, x′
0x

′
1, x′

1x
′
2, x2u1, x2v1, x2w1, x′

2u
′
1, x′

2v
′
1, x′

2w
′
1,

uku, vkv, wkw} ∪ {uiui+1, vivi+1, wiwi+1, u′
iu

′
i+1, v′iv

′
i+1, w′

iw
′
i+1 | 1 ≤ i ≤ k − 1}, where

u′
k = uk, v′k = vk and w′

k = wk. Then P (G) = {x0, x
′
0}, with e(x0) = diam(G) = 2k + 4, while

P3(G) = {u, v, w} with e3(v) = 6k + 6. Each of these vertices could be replaced with one or

more components of the appropriate graph. Figure 2 shows an example with k = 3. In the ex-

ample, e(x0) = e(x′
0) = 10, e(x1) = e(x′

1) = 9, e(x2) = e(x′
2) = e(u) = e(v) = e(w) = 8,
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e(u1) = e(v1) = e(w1) = e(u′
1) = e(v′1) = e(w′

1) = e(u3) = e(v3) = e(w3) = 7, and

e(u2) = e(v2) = e(w2) = e(u′
2) = e(v′2) = e(w′

2) = 6. The closed 3-stop eccentricities are

e3(x0) = e3(x′
0) = e3(u3) = e3(v3) = e3(w3) = 22, e3(u) = e3(v) = e3(w) = 24, and the closed

3-stop eccentricity of each of the remaining vertices is 20. �

�x0 �x1 �x2 �v1 �v2 �v3 �v
′
2 �v

′
1 �x

′
2 �x

′
1 �x

′
0

�u1 �u2 �u3 �u
′
2 �u

′
1

�

w1

�

w2

�

w3

�

w′
2

�

w′
1

�u

�v

�w

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

Figure 2 A graph with P (G) = {x0, x
′
0} and P3(G) = {u, v, w} at distance 6

3 The Closed 3-stop Central Appendage Number

We now turn our attention to the center of a graph. We first show that every graph can be

the closed 3-stop center of some graph, and the closed 3-stop central appendage number is at

most 5.

Proposition 3.1 Let G be any graph. Then there is a supergraph H of G such that C3(H) =

G. In general, |V (H)| − |V (G)| ≤ 5.

Proof Let G be a graph. We obtain H by adding three new vertices x, y, and z and joining

each of them to every vertex in G. Then add vertices u and v and edges uv, ux, and vy.

It is straightforward to check that for every w ∈ V (G), eH
3 (w) = 6 in the new graph, while

eH
3 (x) = eH

3 (y) = eH
3 (z) = 7 and eH

3 (u) = eH
3 (v) = 7. �

As a quick corollary of Proposition 3.1 and Proposition A, we have the following:

Corollary 3.2 The closed 3-stop central appendage number of a graph G is AC3(G) ∈ {0,

3, 4, 5}.
A class of graphs with AC3(G) = 0 is the class of paths of order at least 3. We say that

a graph is closed 3-stop self-centered if every vertex has the same closed 3-stop eccentricity.

For any closed 3-stop self-centered graph G, we have AC3(G) = 0. We study the closed 3-stop

self-centered graphs, and first we make a few observations.

Observation 3.3 If G has the property that for every vertex v ∈ V (G), the vertices in V (G)−
N [v] induce a graph with at least two non-adjacent vertices, then G + Kn is closed 3-stop self-

centered for every integer n ≥ 3.

It is straightforward to check that for every vertex v ∈ V (G), e3(v) = 6. Our next ob-

servation illustrates that not every graph is closed 3-stop self-centered (as already observed in
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Section 2).

Observation 3.4 If G has a cut-vertex v such that G− v has at least three components, then

G is not closed 3-stop self-centered.

To see this, suppose e3(v) = d(v, y, z) and let x be a vertex that is not in the same component

of G − v as either y or z. Notice that e3(x) ≥ d(x, y, z) > d(v, y, z) = e3(v).

Recall that an x-y geodesic is a shortest path between vertex x and vertex y, and the interval

I[x, y] is the set of all vertices which lie on some x-y geodesic. That is, I[x, y] = {v : v belongs

to some x-y geodesic}.
Proposition 3.5 If a graph G has an end-vertex x′ and G is closed 3-stop self-centered, then

there must exist a vertex y ∈ V (G) such that d(x′, y) = diam(G) and the interval I[x′, y] =

V (G).

Proof Suppose that G has an end-vertex x′ adjacent to a vertex x, and suppose that G is

closed 3-stop self-centered. Let w and z be vertices such that e3(x) = d3(x, w, z). If neither

w nor z is equal to x′, then d3(x′, w, z) = d3(x, w, z) + 2, which is a contradiction. Thus,

e3(x) = d3(x, w, x′) = 2d(x, w) + 2 for some vertex w.

Let y be a vertex furthest from x′, so necessarily e(x′) = d(x′, y) and e(x) = d(x, y). If

there is a vertex z /∈ I[x′, y], then d3(x, y, z) ≥ 2d(x, y)+1 ≥ 2d(x, w)+1 = e3(x)−1. However,

then d3(x′, y, z) = d3(x, y, z) + 2 ≥ e3(x) + 1, which is a contradiction. Thus, there is no vertex

z /∈ I[x′, y]. �
By Proposition 3.5, a graph with at least 3 pendant edges cannot be closed 3-stop self-

centered. We concentrate next on graphs with one or two pendant edges.

The converse of Proposition 3.5 is not true. The graph in Figure 3 has an end-vertex x′

and a vertex y such that d(x′, y) = diam(G) and I[x′, y] = V (G), yet e3(z) ≥ d(z, w, v) = 12,

while e3(x′) = e3(x) = 10.

� � � � � �

� � �

� � �

�
�

�

�
�

�

�
�

�

�
�

�

x′ x y

z

w

v

Figure 3 Counterexample to the converse of Proposition 3.5

Corollary 3.6 If G has two end-vertices x and y and G is closed 3-stop self-centered, then

I[x, y] = V (G).

Corollary 3.7 If G has two end-vertices x and y and diam(G) > d(x, y), then G is not closed

3-stop self-centered.

And so, we now consider graphs that are not closed 3-stop self-centered.

Remark 3.8 For every positive integer n ≥ 3, AC3(K1,n) = 3.

To see this, we obtain a connected graph H from G by adding 3 vertices x, y, z, so that every
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pendant of G is either adjacent to x and y, or to z, such that H is a connected graph. And so

the degree of each pendant of the star becomes 2 or 3 in H. The closed 3-stop eccentricities in

H are 10 for the vertices x, y, and z, and 8 for the vertices in V (G).

Proposition 3.9 If G is a graph with no isolated vertices, then AC3(G) ≤ 3.

Proof Consider any spanning forest F of G and let A and B be the partite sets of a bipartition

of F . Notice that since G (and F ) has no isolated vertices, every vertex of A has at least one

neighbor in B and every vertex in B has at least one neighbor in A, and both A and B are

nonempty.

Now, add three new vertices x, y and z to G. Join x to every vertex in A, join y to every

vertex in B, and join z to every vertex in V (G). Notice that dH
3 (x, y, z) = 7, dH

3 (a, x, y) = 6,

and dH
3 (b, x, y) = 6 for every a ∈ A and b ∈ B. We claim that these distances produce the

eccentricities. We can check that dH
3 (x, b, b′) ≤ 6, dH

3 (x, a, a′) ≤ 4, dH
3 (x, a, b) ≤ 6, dH

3 (x, a, z)

≤ 4, and dH
3 (x, z, b) ≤ 5 for every a, a′ ∈ A with a �= a′ and every b, b′ ∈ B with b �= b′.

Similarly, every closed 3-stop distance involving y is at most 6 except for dH
3 (x, y, z). Every

closed 3-stop distance involving z is at most 6 except for dH
3 (x, y, z). Finally, dH

3 (a, a′, b) ≤ 6

and dH
3 (a, b, b′) ≤ 6 for all a, a′ ∈ A and b, b′ ∈ B using vertex z. �

Thus, if G has no isolated vertices, then AC3(G) is either 0 or 3. The graph K2 has closed

3-stop central appendage number 3, since the closed 3-stop center of K2,3 consists of the smaller

partite set. Similarly, AC3(K1∪Km) = 3 for any positive integer m, since the graph formed by

adding three new vertices x, y and z and joining each of them to every vertex of K1 ∪ Km has

closed 3-stop center K1 ∪Km. The next result shows that there exist graphs with AC3(G) > 3.

Proposition 3.10 AC3(K3) = 5.

Proof By Proposition 3.1, we have AC3(K3) ≤ 5. Since K3 is not connected, C3(K3) is

undefined, and K3 cannot be closed 3-stop self-centered. Thus, by Corollary 3.2, AC3(K3) ≥ 3.

Case I Suppose AC3(K3) = 3.

Let H be a (connected) graph of order 6 with C3(H) = K3. Let u, v and w be the vertices of

K3 and let x, y, and z be the vertices of V (H)−V (K3). Since u, v, and w form an independent

set in H, dH
3 (u, v, w) ≥ 6. Thus, dH

3 (x, y, z) = diam3(H) ≥ 7. One of d(x, y), d(y, z), and d(x, z)

must be at least 3, say without loss of generality d(y, z) ≥ 3. Furthermore, if any two of x, y,

and z are adjacent, say d(x, y) = 1, then since H is connected, z must be distance 2 from one

of x or y, and d3(x, y, z) ≤ 6. Thus, we may assume that no two of x, y, or z are adjacent.

Case IA x is adjacent to u, v, and w.

Notice that y and z cannot be adjacent and cannot have a common neighbor. Since H is

a connected graph, each of y and z must be adjacent to at least one of x, u, v, and w, and

at most one can be adjacent to each of x, u, v, or w. Thus, we may assume, without loss of

generality, that y is adjacent to u and that z is not adjacent to u.

Case IAi eH
3 (u) = rad3(H) ≤ 6.

If z is not adjacent to x, then dH
3 (u, y, z) = d(u, y) + d(y, z) + d(z, u) ≥ 1 + 3+ 3 = 7, which
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contradicts eH
3 (u) = 6. If z is adjacent to x, then x is adjacent to every vertex except y and

eH
3 (x) ≤ 6, which contradicts eH

3 (x) = diam3(H).

Case IAii eH
3 (u) = rad3(H) ≥ 7.

Thus, eH
3 (x) = dH

3 (x, y, z) = diam3(H) ≥ 8. We have d(x, y) ≤ 2, and since z must be

adjacent to x, v, or w, d(x, z) ≤ 2. Thus, we must have d(y, z) = 4 and z adjacent to v, w, or

both. Thus, dH
3 (x, y, z) = 8, and eH(u) ≥ dH

3 (u, y, z) ≥ d(y, u)+d(y, z)+d(u, z) ≥ 2d(y, z) = 8.

We have a contradiction.

Case IB x is adjacent to at most two of u, v and w.

In this case, without loss of generality, we may assume that x is not adjacent to w. Since

d(y, z) ≥ 3, at most one of y and z is adjacent to w, say y. Thus, degH(w) = 1. It follows that

dH
3 (x, w, z) = dH

3 (x, y, z) + 2 = diam3(H) + 2, which is not possible.

Case II Suppose AC3(K3) = 4.

Let H be a connected graph of order 7 with C3(H) = K3, let u, v, and w be the vertices

of K3 and let a, b, c, and d be the remaining vertices of H. Without loss of generality, assume

that dH(a, b) is a maximum among dH(a, b), dH(a, c), dH(a, d), dH(b, c), dH(b, d), and dH(c, d).

Set k = dH(a, b). Notice that u, v, and w form an independent set in H, so rad3(H) =

dH
3 (u, v, w) ≥ 6 and diam3(H) ≥ 7. It follows that k ≥ 3. Notice that rad3(H) = e3(u) ≥

dH
3 (u, a, b) ≥ 2d(a, b) ≥ 2k.

Since each shortest a-b path has length at least 3 and since u, v, and w are mutually non-

adjacent, each shortest a-b path must contain at least one vertex other than a, b, u, v, and

w. If both c and d lie on shortest a-b paths, then diam3(H) = 2k and C3(H) = H. This is

a contradiction. Thus, without loss of generality, c lies on every shortest a-b path, and d does

not lie on any shortest a-b path. It also follows that k ≤ 4.

Case IIA rad3(H) = 2k.

In this case, each of u, v, and w must lie on some shortest a-b path, since, for example,

eH
3 (u) ≥ dH

3 (u, a, b).

We now present a proof by contradiction both in the case of k = 3 and k = 4. If k = 3, then

without loss of generality, u, v, and w are each adjacent to both a and c, and c is adjacent to b.

If k = 4, then without loss of generality, u is adjacent to a and c, while v and w are adjacent to

b and c. (Any other possibility involves a different partition of {u, v, w}.) In either case, if d

is adjacent to any of c, u, v, or w, then eH
3 (c) ≤ 2k, which is not possible since c /∈ C3(H). (In

the k = 3 case, if d is adjacent to c, then d(a, c) = 2 and every other vertex is within distance 1

of c, so eH
3 (c) ≤ 6. In the k = 3 case, if d is adjacent to u, v, or w, then only a and d are

distance 2 from c, and dH
3 (c, a, d) = 6. In the k = 4 case, every vertex is within distance 2 of c,

so eH
3 (c) ≤ 8.) Otherwise, d is adjacent only to a or to b, but not to both. But then d(d, a) or

d(d, b) is greater than d(a, b), which contradicts our choice of a and b.

Case IIB rad3(H) ≥ 2k + 1.

Thus, diam3(H) ≥ 2k + 2. If k = 3, then without loss of generality, a, u, c, b is a shortest
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a-b path. Since eH
3 (c) ≥ 8 and dH(c, a) = 2, dH(c, b) = 1, and each pair of a, b, c, and d is at

distance at most 3, we must have dH(c, d) = 3 and dH(d, a) = 3. Now, d cannot be adjacent to

a, b, or u, so d is adjacent only to w or v. Say d is adjacent to w; then w cannot be adjacent to

a or c, so w must be adjacent to b. Notice that w cannot be adjacent to anything other than

b and d, and d cannot be adjacent to any vertex other than w and possibly v. If d is adjacent

to v, then v is also adjacent to only b and d. Now, since dH(a, d) = 3, and b is the only vertex

distance 2 from d, we must have a adjacent to b. However, this contradicts our choice of a

and b so that dH(a, b) is a maximum among dH(a, b), dH(a, c), dH(a, d), dH(b, c), dH(b, d) and

dH(a, d).

If k = 4, then without loss of generality, a shortest a-b path is a, u, c, v, b. We need

eH
3 (c) ≥ 10, but dH(a, c) = dH(b, c) = 2. We must have dH(c, d) ≥ 3, so d is not adjacent to c,

u, or v. Now, d can be adjacent to at most one of a or b, and if d is not adjacent to any vertex

other than a or b, then dH(a, d) or dH(b, d) is greater than dH(a, b), contradicting our choice of

a and b. Thus, d must be adjacent to w, and w is not adjacent to c. If w is adjacent to both a

and b, then dH(a, b) < 4. Otherwise, w is adjacent to one of a and b, say b. Since dH(a, d) ≤ 4,

we must have d adjacent to a. There is now a Hamiltonian cycle in the graph, so eH
3 (u) ≤ 7.

This is not possible. �

Regarding the standard center and the closed 3-stop center of a graph G, it is also possible

that C3(G) ⊆ C(G), or C(G) ⊆ C3(G), or even C(G) ∩ C3(G) = ∅. For instance, C(Pn) ⊆
C3(Pn) and C3(K2,n) ⊆ C(K2,n) for n ≥ 3, while C(G) ∩C3(G) = ∅ for the graph in Figure 4.
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Figure 4 Example of a graph H with C(H) ∼= F , C3(H) ∼= G, and d(C(H), C3(H)) = 3

Proposition 3.11 For any graphs G and F and any integer k ≥ 3, there exists a connected

graph H such that C(H) ∼= F , C3(H) ∼= G and d(C(H), C3(H)) = k.
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Proof For k ≥ 3, we define the graph H as V (H) = V (G) ∪ V (F ) ∪ {ui | 1 ≤ i ≤ 2k + 1} ∪
{vi | 1 ≤ i ≤ 2k − 1} ∪ {wi, xi | 1 ≤ i ≤ k − 1} ∪ {yi, zi, u1,i, v1,i | 1 ≤ i ≤ 2} ∪ {ui,1, vi,1 | 2 ≤ i ≤
2k−1, i �= k}, and E(H) = E(F )∪E(G)∪{xx1, xz1, xwk−1 |x ∈ V (F )}∪{xu1, xv1, xw1, xy1 |x ∈
V (G)} ∪ {uiui+1 | 1 ≤ i ≤ 2k} ∪ {vivi+1 | 1 ≤ i ≤ 2k − 2} ∪ {wiwi+1, xixi+1 | 1 ≤ i ≤ k −
2} ∪ {uiui,1, vivi,1 | 1 ≤ i ≤ 2k − 1, i �= k} ∪ {u1,1u1,2, v1,1v1,2, y1y2, z1z2, v2k−1u2k}. From the

construction of graph H, we have the following:

e(x) = 2k for x ∈ V (F ),

e(x) > 2k for x ∈ V (H) − V (F ),

e3(x) = 4k + 6 for x ∈ V (G),

e3(x) > 4k + 6 for x ∈ V (H) − V (G).

See Figure 4 for an example with k = 3. �

4 Open Questions

Propositions 2.2, 2.3, and 2.4 characterize the graphs G for which the closed 3-stop central

appendage number exists and show that AP3(G) is 0, 1, or 2 when it exists. An open question

is to characterize which graphs are closed 3-stop self-peripheral graphs, which graphs have

AP3(G) = 1, and which graphs have AP3(G) = 2. By Proposition 2.5, we know that the

periphery and closed 3-stop periphery of a graph may be arbitrarily far apart and that the

periphery and closed 3-stop periphery may be any graphs provided that the periphery has at

least two components and the closed 3-stop periphery has at least 3 components. However,

we have no general construction showing how the periphery and closed 3-stop periphery can

overlap. Specifically, given a graph J with subgraphs F and G such that V (F )∪V (G) = V (J),

F has at least 2 components, G has at least 3 components, and V (F ) ∩ V (G) �= ∅, does there

exist a graph H with P (H) ∼= F and P3(H) ∼= G?

By Proposition 3.1 and Corollary 3.2, the closed 3-stop central appendage number exists for

every graph G and AC3(G) ∈ {0, 3, 4, 5}. Furthermore, by Proposition 3.9, if G has no isolated

vertices, then AC3(G) ∈ {0, 3}. Observations 3.3 and 3.4, Proposition 3.5 and Corollaries 3.6

and 3.7 identify some particular classes of graphs as being closed 3-stop self-centered or not

closed 3-stop self-centered, though more work is needed to fully characterize the closed 3-stop

self-centered graphs. We have examples of graphs G with AC3(G) = 0, 3, and 5, but have not

found an example with AC3(G) = 4. Is it possible for a graph G to have AC3(G) = 4? Finally,

Proposition 3.11 shows that the center and closed 3-stop center of a graph can be any graphs

and can be arbitrarily far apart. However, we have no general construction showing how the

center and closed 3-stop center might overlap. Given a graph J with subgraphs F and G such

that V (F ) ∪ V (G) = V (J) and V (F ) ∩ V (G) �= ∅, does there exist a graph H with C(H) ∼= F

and C3(H) ∼= G?

Acknowledgements We would like to thank the referees for their comments which improved

and clarified the paper.



14 Eroh L., et al.

References
[1] Gadzinski, J., Sanders, P., Xiong, V.: k-stop-return distances in graphs. Unpublished manuscript

[2] Bullington, G., Eroh, L., Gera, R., et al.: Closed k-stop distance in graphs. Discuss. Math. Graph Theory,

31(3), 533–545 (2011)

[3] Buckley, V., Lewinter, M.: Minimal graph embeddings, eccentric vertices, and the peripherian. Proceedings

of the Fifth Caribbean Conference on Combinatorics and Computing, University of the West Indies, 1988,

72–84

[4] Koker, J., McDougal, K., Winters, S. J.: The edge-deleted center of a graph. Proceedings of the Eighth

Quadrennial Conference on Graph Theory, Combinatorics, Algorithms and Applications, 2, 1998, 567–575

[5] Buckley, F., Miller, Z., Slater, P. J.: On graphs containing a given graph as center. J. Graph Theory, 5,

427–434 (1981)

[6] Bielak, H., Syslo, M. M.: Peripheral vertices in graphs. Studia Sci. Math. Hungar., 18, 269–275 (1983)

[7] Chartrand, G., Johns, G. L., Oellermann, O. R.: On peripheral vertices in graphs. Topics in Combinatorics

and Graph Theory, Physica-Verlag, Heidelberg, Germany, 1990, 194–199

[8] Eroh, L., Koker, J., Moghadam, H., et al.: Classifying trees with edge-deleted central appendage number

2. Math. Bohem., 134(1), 99–110 (2009)

[9] Koker, J., Moghadam, H., Stalder, S., et al.: The edge-deleted central appendage number of graphs. Bull.

Inst. Combin. Appl., 34, 45–54 (2002)

[10] Chartrand, G., Oellermann, O. R., Tian, S., et al.: Steiner distance in graphs. C̆asopis Pro Pĕstováńı
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