121 research outputs found

    High-Resolution Nanoscale Solid-State Nuclear Magnetic Resonance Spectroscopy

    Full text link
    We present a new method for high-resolution nanoscale magnetic resonance imaging (nano-MRI) that combines the high spin sensitivity of nanowire-based magnetic resonance detection with high spectral resolution nuclear magnetic resonance (NMR) spectroscopy. By applying NMR pulses designed using optimal control theory, we demonstrate a factor of 500500 reduction of the proton spin resonance linewidth in a (50-nm)3(50\text{-nm})^{\text{3}} volume of polystyrene and image proton spins in one dimension with a spatial resolution below 2 nm2~\text{nm}.Comment: Main text: 8 pages, 6 figures; supplementary information: 10 pages, 10 figure

    Nanomechanical detection of nuclear magnetic resonance using a silicon nanowire oscillator

    Full text link
    We report the use of a silicon nanowire mechanical oscillator as a low-temperature nuclear magnetic resonance force sensor to detect the statistical polarization of 1H spins in polystyrene. Under operating conditions, the nanowire experienced negligible surface-induced dissipation and exhibited a nearly thermally-limited force noise of 1.9 aN^2/Hz in the measurement quadrature. In order to couple the 1H spins to the nanowire oscillator, we have developed a new magnetic resonance force detection protocol which utilizes a nanoscale current-carrying wire to produce large time-dependent magnetic field gradients as well as the rf magnetic field.Comment: 14 pages, 5 figure

    Growth and Transport Properties of Complementary Germanium Nanowire Field Effect Transistors

    Get PDF
    n- and p-type Ge nanowires were synthesized by a multistep process in which axial elongation, via vapor–liquid–solid (VLS) growth, and doping were accomplished in separate chemical vapor deposition steps. Intrinsic, single-crystal, Ge nanowires prepared by Au nanocluster-mediated VLS growth were surface-doped in situ using diborane or phosphine, and then radial growth of an epitaxial Ge shell was used to cap the dopant layer. Field-effect transistors prepared from these Ge nanowires exhibited on currents and transconductances up to 850 µA/µm and 4.9 µA/V, respectively, with device yields of \u3e85%
    • …
    corecore