14,313 research outputs found

    Embedded Ribbons of Graphene Allotropes: An Extended Defect Perspective

    Full text link
    Four fundamental dimer manipulations can be used to produce a variety of localized and extended defect structures in graphene. Two-dimensional templates result in graphene allotropes, here viewed as extended defects, which can exhibit either metallic or semiconducting electrical character. \emph{Embedded allotropic ribbons}--i.e. thin swaths of the new allotropes--can also be created within graphene. We examine these ribbons and find that they maintain the electrical character of their parent allotrope even when only a few atoms in width. Such extended defects may facilitate the construction of monolithic electronic circuitry.Comment: 24 pages, 21 figure

    Hartree-Fock-Bogoliubov Model and Simulation of Attractive and Repulsive Bose-Einstein Condensates

    Get PDF
    We describe a model of dynamic Bose-Einstein condensates near a Feshbach resonance that is computationally feasible under assumptions of spherical or cylindrical symmetry. Simulations in spherical symmetry approximate the experimentally measured time to collapse of an unstably attractive condensate only when the molecular binding energy in the model is correct, demonstrating that the quantum fluctuations and atom-molecule pairing included in the model are the dominant mechanisms during collapse. Simulations of condensates with repulsive interactions find some quantitative disagreement, suggesting that pairing and quantum fluctuations are not the only significant factors for condensate loss or burst formation. Inclusion of three-body recombination was found to be inconsequential in all of our simulations, though we do not consider recent experiments [1] conducted at higher densities

    Nonequilibrium quantum dynamics of partial symmetry breaking for ultracold bosons in an optical lattice ring trap

    Full text link
    A vortex in a Bose-Einstein condensate on a ring undergoes quantum dynamics in response to a quantum quench in terms of partial symmetry breaking from a uniform lattice to a biperiodic one. Neither the current, a macroscopic measure, nor fidelity, a microscopic measure, exhibit critical behavior. Instead, the symmetry memory succeeds in identifying the point at which the system begins to forget its initial symmetry state. We further identify a symmetry energy difference in the low lying excited states which trends with the symmetry memory

    Formation of Random Dark Envelope Solitons from Incoherent Waves

    Full text link
    This letter reports experimental results on a new type of soliton: the random temporal dark soliton. One excites an incoherent large-amplitude propagating spin-wave packet in a ferromagnetic film strip with a repulsive, instantaneous nonlinearity. One then observes the random formation of dark solitons from this wave packet. The solitons appear randomly in time and in position relative to the entire wave packet. They can be gray or black. For wide and/or very strong spin-wave packets, one also observes multiple dark solitons. In spite of the randomness of the initial wave packets and the random formation processes, the solitons show signatures that are found for conventional coherent dark solitons.Comment: 10 pages, 4 figures, double-spaced preprint forma

    We Shall: Photographs by Paul D\u27Amato

    Get PDF
    https://via.library.depaul.edu/museum-publications/1014/thumbnail.jp

    Effects of tunable excitation in carotenoids explained by the vibrational energy relaxation approach

    Get PDF
    V. B. acknowledges funding by the Leverhulme Trust Research Project Grant RPG-2015-337. J. H. and C. N. L. acknowledge funding by the Austrian Science Fund (FWF): START project Y 631-N27. D. A. acknowledges support by the Research Council of Lithuania (No MIP-090/2015). G. C. acknowledges support by the European Research Council Advanced Grant STRATUS (ERC-2011-AdG No. 291198). G. C. and J. H. acknowledge funding by Laserlab-Europe (EU-H2020 654148)
    corecore