30 research outputs found

    Missed diagnoses: Clinically relevant lessons learned through medical mysteries solved by the Undiagnosed Diseases Network

    No full text
    Abstract Background Resources within the Undiagnosed Diseases Network (UDN), such as genome sequencing (GS) and model organisms aid in diagnosis and identification of new disease genes, but are currently difficult to access by clinical providers. While these resources do contribute to diagnoses in many cases, they are not always necessary to reach diagnostic resolution. The UDN experience has been that participants can also receive diagnoses through the thoughtful and customized application of approaches and resources that are readily available in clinical settings. Methods The UDN Genetic Counseling and Testing Working Group collected case vignettes that illustrated how clinically available methods resulted in diagnoses. The case vignettes were classified into three themes; phenotypic considerations, selection of genetic testing, and evaluating exome/GS variants and data. Results We present 12 participants that illustrate how clinical practices such as phenotype‐driven genomic investigations, consideration of variable expressivity, selecting the relevant tissue of interest for testing, utilizing updated testing platforms, and recognition of alternate transcript nomenclature resulted in diagnoses. Conclusion These examples demonstrate that when a diagnosis is elusive, an iterative patient‐specific approach utilizing assessment options available to clinical providers may solve a portion of cases. However, this does require increased provider time commitment, a particular challenge in the current practice of genomics

    Understanding Adult Participant and Parent Empowerment Prior to Evaluation in the Undiagnosed Diseases Network

    No full text
    The burden of living with an undiagnosed condition is high and includes physical and emotional suffering, frustrations, and uncertainty. For patients and families experiencing these stressors, higher levels of empowerment may be associated with better outcomes. Thus, it is important to understand the experiences of patients with undiagnosed conditions and their families affected by undiagnosed conditions in order to identify strategies for fostering empowerment. In this study, we used the Genetic Counseling Outcome Scale (GCOS-24) to assess levels of empowerment and support group participation in 35 adult participants and 67 parents of child participants in the Undiagnosed Diseases Network (UDN) prior to their UDN in-person evaluation. Our results revealed significantly lower empowerment scores on the GCOS-24 in adult participants compared to parents of child participants [t(100) = - 3.01, p = 0.003, average difference = - 11.12, 95% CI (- 3.78, - 18.46)] and no significant association between support group participation and empowerment scores. The majority of participants (84.3%, 86/102) are not currently participating in any support groups, and participation rates were not significantly different for adult participants and parents of child participants (11.4 vs. 19.7%, respectively, FE p = 0.40). Open-ended responses provided additional insight into support group participation, the challenges of living with undiagnosed conditions, and positive coping strategies. Future research will evaluate the extent to which empowerment scores change as participation in the UDN unfolds

    Expanding the phenotypic spectrum of GABRG2 variants : a recurrent GABRG2 missense variant associated with a severe phenotype

    No full text
    Pathogenic missense and truncating variants in the GABRG2 gene cause a spectrum of epilepsies, from Dravet syndrome to milder simple febrile seizures. In most cases, pathogenic missense variants in the GABRG2 gene segregate with a febrile seizure phenotype. In this case series, we report a recurrent, de novo missense variant (c0.316 G > A; p.A106T) in the GABRG2 gene that was identified in five unrelated individuals. These patients were described to have a more severe phenotype than previously reported for GABRG2 missense variants. Common features include variable early-onset seizures, significant motor and speech delays, intellectual disability, hypotonia, movement disorder, dysmorphic features and vision/ocular issues. Our report further explores a recurrent pathogenic missense variant within the GABRG2 variant family and broadens the spectrum of associated phenotypes for GABRG2-associated disorders

    Clinical genetic testing for patients with autism spectrum disorders

    No full text
    BACKGROUND: Multiple lines of evidence indicate a strong genetic contribution to autism spectrum disorders (ASDs). Current guidelines for clinical genetic testing recommend a G-banded karyotype to detect chromosomal abnormalities and fragile X DNA testing, but guidelines for chromosomal microarray analysis have not been established. PATIENTS AND METHODS: A cohort of 933 patients received clinical genetic testing for a diagnosis of ASD between January 2006 and December 2008. Clinical genetic testing included G-banded karyotype, fragile X testing, and chromosomal microarray (CMA) to test for submicroscopic genomic deletions and duplications. Diagnostic yield of clinically significant genetic changes was compared. RESULTS: Karyotype yielded abnormal results in 19 of 852 patients (2.23% [95% confidence interval (CI): 1.73%-2.73%]), fragile X testing was abnormal in 4 of 861 (0.46% [95% CI: 0.36%-0.56%]), and CMA identified deletions or duplications in 154 of 848 patients (18.2% [95% CI: 14.76%-21.64%]). CMA results for 59 of 848 patients (7.0% [95% CI: 5.5%-8.5%]) were considered abnormal, which includes variants associated with known genomic disorders or variants of possible significance. CMA results were normal in 10 of 852 patients (1.2%) with abnormal karyotype due to balanced rearrangements or unidentified marker chromosome. CMA with whole-genome coverage and CMA with targeted genomic regions detected clinically relevant copy-number changes in 7.3% (51 of 697) and 5.3% (8 of 151) of patients, respectively, both higher than karyotype. With the exception of recurrent deletion and duplication of chromosome 16p11.2 and 15q13.2q13.3, most copy-number changes were unique or identified in only a small subset of patients. CONCLUSIONS: CMA had the highest detection rate among clinically available genetic tests for patients with ASD. Interpretation of microarray data is complicated by the presence of both novel and recurrent copy-number variants of unknown significance. Despite these limitations, CMA should be considered as part of the initial diagnostic evaluation of patients with ASD

    Heterozygous loss-of-function variants significantly expand the phenotypes associated with loss of GDF11.

    No full text
    PurposeGrowth differentiation factor 11 (GDF11) is a key signaling protein required for proper development of many organ systems. Only one prior study has associated an inherited GDF11 variant with a dominant human disease in a family with variable craniofacial and vertebral abnormalities. Here, we expand the phenotypic spectrum associated with GDF11 variants and document the nature of the variants.MethodsWe present a cohort of six probands with de novo and inherited nonsense/frameshift (4/6 patients) and missense (2/6) variants in GDF11. We generated gdf11 mutant zebrafish to model loss of gdf11 phenotypes and used an overexpression screen in Drosophila to test variant functionality.ResultsPatients with variants in GDF11 presented with craniofacial (5/6), vertebral (5/6), neurological (6/6), visual (4/6), cardiac (3/6), auditory (3/6), and connective tissue abnormalities (3/6). gdf11 mutant zebrafish show craniofacial abnormalities and body segmentation defects that match some patient phenotypes. Expression of the patients' variants in the fly showed that one nonsense variant in GDF11 is a severe loss-of-function (LOF) allele whereas the missense variants in our cohort are partial LOF variants.ConclusionGDF11 is needed for human development, particularly neuronal development, and LOF GDF11 alleles can affect the development of numerous organs and tissues
    corecore