4 research outputs found
Preparation of Structure-Function Integrated Layered CNT/Mg Composites
Magnesium (Mg)-matrix composites have excellent damping and electromagnetic shielding properties. However, the mismatch between their strength and toughness limits their wide application. The aim of this work is to overcome the strength-toughness mismatch by constructing micro- and nanostructures while maintaining the good functional properties of Mg-matrix composites. Electrophoretic deposition (EPD) was used to spread carbon nanotubes (CNTs) out evenly on a Mg foil matrix. After spark plasma sintering (SPS), the grain organisation was refined, and the interlayer bonding was strengthened by hot rolling deformation. Finally, the microstructure, mechanical properties, damping properties, and electromagnetic shielding properties of the composites were analysed. Compared with the pure Mg laminates, the tensile strength and elongation of the CNT/Mg laminates were increased by 6.4% and 108.4%, respectively, with the significant improvement in toughness resulting from the increase in energy required for crack propagation due to the laminate structure. When the total rolling deflection reaches 80%, the interlayer bond strength of the material is significantly increased, the grain is further refined, and the strength and elongation of the composite material reaches the optimum, with the tensile strength reaching 241.70 MPa and the elongation reaching 6.90%. The interlayer interface and grain refinement also affected the damping Mg and electromagnetic shielding effect of the composites. This work provides an experimental idea for the preparation of high-performance structure-function integrated Mg-based materials
Design and Preparation of CNTs/Mg Layered Composites
In order to effectively solve the problem of strength and ductility mismatch of magnesium (Mg) matrix composites, carbon nanotubes (CNTs) are added as reinforcement. However, it is difficult to uniformly disperse CNTs in a metal matrix to form composites. In this paper, electrophoretic deposition (EPD) was used to obtain layered units, and then the CNTs/Mg layered units were sintered by spark plasma sintering to synthesize layered CNTs/Mg composites. The deposition morphology of the layered units obtained by EPD and the microstructure, damping properties, and mechanical properties of the composite material were analyzed. The results show that the strength and ductility of the composite sample sintered at 590 °C were improved compared with the layered pure Mg and the composite sample sintered at 600 °C. Compared with pure Mg, the composites rolled by 40% had a much higher strength but no significant decrease in ductility. The damping properties of the CNTs/Mg composites were tested. The damping–test-temperature curve (tanδ~T) rose gradually with increasing temperature in the range of room temperature to 350 °C, and two internal friction peaks appeared. The damping properties of the tested composites at room temperature decreased with increasing frequency. The layered structure of the CNTs/Mg had ultra-high strengthening efficiency and maintained its ductility. The layered units prepared by EPD can uniformly disperse the CNTs in the composites
Effects of pre-strain deep cryogenic aging on the mechanical and corrosion properties of 2A97 aluminum–lithium alloy
In order to improve the mechanical properties and corrosion resistance of 2A97 aluminum-lithium alloy, this research develops a novel strain heat-treatment technology. Surprisingly, 2A97 alloy treated by 4% pre-strain and 48 h deep cryogenic aging exhibits excellent mechanical properties, whose yield strength, tensile strength, and elongation are 573.7 MPa, 593.6 MPa, and 14.25%, respectively. Furthermore, the corrosion resistance of samples treated by the above pre-strain deep cryogenic aging process is two times as much as traditional T6 aged. This study deeply investigates the influence of various precipitates in 2A97 alloy on its performance through microstructure analysis. The results show that the introduction of pre-strain inhibits the precipitates of the T1 and δ′ phases at the grain boundaries, and prevents the formation and widening of precipitate-free zones. At the same time, it reduces the potential difference between grain boundaries and matrix, and enhances the corrosion resistance of 2A97 alloy. Deep cryogenic can inhibit recovery and maintain deformation dislocation, so that a large number of defects produced by pre-strain promote the nucleation and diffusion of precipitates in the matrix, resulting in tiny and uniformly distributed precipitates. Therefore, the novel pre-strain deep cryogenic aging not only endues 2A97 alloy excellent performance, but also offers a new strategy for controlling precipitation