32 research outputs found
Role of oxidative stress on diesel-enhanced influenza infection in mice
Numerous studies have shown that air pollutants, including diesel exhaust (DE), reduce host defenses, resulting in decreased resistance to respiratory infections. This study sought to determine if DE exposure could affect the severity of an ongoing influenza infection in mice, and examine if this could be modulated with antioxidants. BALB/c mice were treated by oropharyngeal aspiration with 50 plaque forming units of influenza A/HongKong/8/68 and immediately exposed to air or 0.5 mg/m3 DE (4 hrs/day, 14 days). Mice were necropsied on days 1, 4, 8 and 14 post-infection and lungs were assessed for virus titers, lung inflammation, immune cytokine expression and pulmonary responsiveness (PR) to inhaled methacholine. Exposure to DE during the course of infection caused an increase in viral titers at days 4 and 8 post-infection, which was associated with increased neutrophils and protein in the BAL, and an early increase in PR. Increased virus load was not caused by decreased interferon levels, since IFN-β levels were enhanced in these mice. Expression and production of IL-4 was significantly increased on day 1 and 4 p.i. while expression of the Th1 cytokines, IFN-γ and IL-12p40 was decreased. Treatment with the antioxidant N-acetylcysteine did not affect diesel-enhanced virus titers but blocked the DE-induced changes in cytokine profiles and lung inflammation. We conclude that exposure to DE during an influenza infection polarizes the local immune responses to an IL-4 dominated profile in association with increased viral disease, and some aspects of this effect can be reversed with antioxidants
Recommended from our members
Isolation of Metals from Liquid Wastes: Reactive Scavenging in Turbulent Thermal Reactors
The Overall project demonstrated that toxic metals (cesium Cs and strontium Sr) in aqueous and organic wastes can be isolated from the environment through reaction with kaolinite based sorbent substrates in high temperature reactor environments. In addition, a state-of-the art laser diagnostic tool to measure droplet characteristic in practical 'dirty' laboratory environments was developed, and was featured on the cover of a recent edition of the scientific journal ''applied Spectroscopy''. Furthermore, great strides have been made in developing a theoretical model that has the potential to allow prediction of the position and life history of every particle of waste in a high temperature, turbulent flow field, a very challenging problem involving as it does, the fundamentals of two phase turbulence and of particle drag physics
Sample characterization of automobile and forklift diesel exhaust particles and comparative pulmonary toxicity in mice.
Two samples of diesel exhaust particles (DEPs) predominate in health effects research: an automobile-derived DEP (A-DEP) sample and the National Institute of Standards Technology standard reference material (SRM 2975) generated from a forklift engine. A-DEPs have been tested extensively for their effects on pulmonary inflammation and exacerbation of allergic asthmalike responses. In contrast, SRM 2975 has been tested thoroughly for its genotoxicity. In the present study, we combined physical and chemical analyses of both DEP samples with pulmonary toxicity testing in CD-1 mice to compare the two materials and to make associations between their physicochemical properties and their biologic effects. A-DEPs had more than 10 times the amount of extractable organic material and less than one-sixth the amount of elemental carbon compared with SRM 2975. Aspiration of 100 micro g of either DEP sample in saline produced mild acute lung injury; however, A-DEPs induced macrophage influx and activation, whereas SRM 2975 enhanced polymorphonuclear cell inflammation. A-DEPs stimulated an increase in interleukin-6 (IL-6), tumor necrosis factor alpha, macrophage inhibitory protein-2, and the TH2 cytokine IL-5, whereas SRM 2975 only induced significant levels of IL-6. Fractionated organic extracts of the same quantity of DEPs (100 micro g) did not have a discernable effect on lung responses and will require further study. The disparate results obtained highlight the need for chemical, physical, and source characterization of particle samples under investigation. Multidisciplinary toxicity testing of diesel emissions derived from a variety of generation and collection conditions is required to meaningfully assess the health hazards associated with exposures to DEPs. Key words: automobile, diesel exhaust particles, forklift, mice, pulmonary toxicity, SRM 2975
Recommended from our members
Isolation of Metals from Liquid Wastes: Reactive Scavenging by Sorbents in Turbulent Reactors
The objective of this work is to develop the fundamental knowledge base for the design of a broad class of high temperature reactive capture processes to treat metals-bearing liquid waste in the DOE inventory. The major thrust is devoted to understanding phenomena that govern process performance and are critical to achieving emission specifications
Recommended from our members
Isolation of Metals from Liquid Wastes: Reactive Scavenging by Sorbets in Turbulent Reactors
The objective of this work is to develop the fundamental knowledge base for the design of a broad class of high-temperature reactive capture processes to treat metals-bearing liquid waste in the DOE inventory. The major thrust is devoted to understanding phenomena that govern process performance and are critical to achieving emission specifications
Recommended from our members
Isolation of Metals from Liquid Wastes: Reactive Scavenging in Turbulent Thermal Reactors
A large portion of the Department of Energy (DOE) radioactive waste inventory is composed of metal-bearing liquid wastes, which may or may not also contain organics. It is highly desirable to concentrate the metals in order to reduce the volume of these wastes and to render them into an environmentally benign form. One method for doing this is to exploit high-temperatures to reactively capture metals by sorbents, and thus to isolate them from the environment. The objective of this research is to provide the background information necessary to design a process that accomplishes this on a large scale, namely in hot turbulent flows, into which are injected the wastes to be treated and, also the sorbents that scavenge the metals. The current work focuses on cesium and strontium, which are present in the DOE inventory as radioactive isotopes. The project involves five investigators at three institutions, and is comprised of the following parts: (1) Experimental research at the University of Arizona focuses on the chemistry of cesium and strontium sorption on kaolinite and lime sorbents in a laminar flow environment. (2) Theoretical research pursued jointly by the University of Arizona and Sandia Laboratories, Livermore, focuses on prediction of droplet trajectories in a turbulent flow environment. (3) Experimental research at the Air Pollution Technology Branch of the US Environmental Protection Agency, to investigate the process in turbulent flows. (4) Experimental research at the University of Illinois focuses on design, construction, and application of a laser based LIBS system for measuring droplet size, metal concentration in the gas phase, and metal concentration in the vapor phase. This analysis procedure will be used both at the University Of Arizona laminar flow reactor and the EPA turbulent flow reactor. (5) Theoretical research at the University of Illinois to provide input into the drag model to be used to predict droplet trajectories in hot turbulent flows
Mutagenicity and Pollutant Emission Factors of Solid-Fuel Cookstoves: Comparison with Other Combustion Sources
BACKGROUND: Emissions from solid fuels used for cooking cause ~4 million premature deaths per year. Advanced solid-fuel cookstoves are a potential solution, but they should be assessed by appropriate performance indicators, including biological effects.
OBJECTIVE: We evaluated two categories of solid-fuel cookstoves for eight pollutant and four mutagenicity emission factors, correlated the mutagenicity emission factors, and compared them to those of other combustion emissions.
METHODS: We burned red oak in a 3-stone fire (TSF), a natural-draft stove (NDS), and a forced-draft stove (FDS), and we combusted propane as a liquified petroleum gas control fuel. We determined emission factors based on useful energy (megajoules delivered, MJd) for carbon monoxide, nitrogen oxides (NOx), black carbon, methane, total hydrocarbons, 32 polycyclic aromatic hydrocarbons, PM2.5, levoglucosan (a wood-smoke marker), and mutagenicity in Salmonella.
RESULTS: With the exception of NOx, the emission factors per MJd were highly correlated (r ≥ 0.97); the correlation for NOx with the other emission factors was 0.58-0.76. Excluding NOx, the NDS and FDS reduced the emission factors an average of 68 and 92%, respectively, relative to the TSF. Nevertheless, the mutagenicity emission factor based on fuel energy used (MJthermal) for the most efficient stove (FDS) was between those of a large diesel bus engine and a small diesel generator.
CONCLUSIONS: Both mutagenicity and pollutant emission factors may be informative for characterizing cookstove performance. However, mutagenicity emission factors may be especially useful for characterizing potential health effects and should be evaluated in relation to health outcomes in future research. An FDS operated as intended by the manufacturer is safer than a TSF, but without adequate ventilation, it will still result in poor indoor air quality.
CITATION: Mutlu E, Warren SH, Ebersviller SM, Kooter IM, Schmid JE, Dye JA, Linak WP, Gilmour MI, Jetter JJ, Higuchi M, DeMarini DM. 2016. Mutagenicity and pollutant emission factors of solid-fuel cookstoves: comparison with other combustion sources. Environ Health Perspect 124:974-982; http://dx.doi.org/10.1289/ehp.1509852
One-Month Diesel Exhaust Inhalation Produces Hypertensive Gene Expression Pattern in Healthy Rats
BackgroundExposure to diesel exhaust (DE) is linked to vasoconstriction, endothelial dysfunction, and myocardial ischemia in compromised individuals.ObjectiveWe hypothesized that DE inhalation would cause greater inflammation, hematologic alterations, and cardiac molecular impairment in spontaneously hypertensive (SH) rats than in healthy Wistar Kyoto (WKY) rats.Methods and resultsMale rats (12–14 weeks of age) were exposed to air or DE from a 30-kW Deutz engine at 500 or 2,000 μg/m3, 4 hr/day, 5 days/week for 4 weeks. Neutrophilic influx was noted in the lung lavage fluid of both strains, but injury markers were minimally changed. Particle-laden macrophages were apparent histologically in DE-exposed rats. Lower baseline cardiac anti-oxidant enzyme activities were present in SH than in WKY rats; however, no DE effects were noted. Cardiac mitochondrial aconitase activity decreased after DE exposure in both strains. Electron microscopy indicated abnormalities in cardiac mitochondria of control SH but no DE effects. Gene expression profiling demonstrated alterations in 377 genes by DE in WKY but none in SH rats. The direction of DE-induced changes in WKY mimicked expression pattern of control SH rats without DE. Most genes affected by DE were down-regulated in WKY. The same genes were down-regulated in SH without DE producing a hypertensive-like expression pattern. The down-regulated genes included those that regulate compensatory response, matrix metabolism, mitochondrial function, and oxidative stress response. No up-regulation of inflammatory genes was noted.ConclusionsWe provide the evidence that DE inhalation produces a hypertensive-like cardiac gene expression pattern associated with mitochondrial oxidative stress in healthy rats
Recommended from our members
The characterization of particulate pollutants in southern Arizona: the historical data base and field study
This item was digitized from a paper original and/or a microfilm copy. If you need higher-resolution images for any content in this item, please contact us at [email protected]