103 research outputs found

    Extension of the Lower Load Limit in Dieseline Compression Ignition Mode

    Get PDF
    AbstractA study to extend the low load limit of the mixture of commercial gasoline and diesel in the compression mode is performed on a single cylinder diesel engine. The additional measures, like intake heating, rebreathing, negative valve overlap, are not employed. By adopting boosting, sweeping the injection pressure and varying the fuel octane number, the minimum fuelling rate and the minimum IMEP gained is compared. Besides, the thermal efficiency and emission results at these operation points are also discussed.The results illustrate that the high intake pressure, the low injection pressure and the low fuel octane number are very effective to extend low load limit. With these strategies, gasoline-type fuels can get the lowest load 0.07MPa IMEP (0.14MPa intake pressure and 20MPa injection pressure) and successfully replace diesel at low load operation points in the compression mode. Increasing the intake pressure and reducing the injection pressure can significantly reduce the minimum fuelling rate and then the minimum IMEP. The minimum IMEP (0.34MPa) of the calibration point on the original engine at test speed (1600rpm) can be achieved by G80 without boosting.The combustion efficiency is influenced by the intake pressure and the injection pressure, however, the ISFC is more dependent on the engine load rather than other factors. If there is more over-lean mixture in cylinder when adjusting the experimental conditions, CO and HC emissions are higher. To satisfy the Euro VI regulation on NOx (<0.4g/kWh), a small amount of EGR is needed to control NOx emission

    A WEIGHT-BOUNDED IMPORTANCE SAMPLING METHOD FOR VARIANCE REDUCTION

    Get PDF
    Importance sampling (IS) is an important technique to reduce the estimation variance in Monte Carlo simulations. In many practical problems, however, the use of IS method may result in unbounded variance, and thus fail to provide reliable estimates. To address the issue, we propose a method which can prevent the risk of unbounded variance; the proposed method performs the standard IS for the integral of interest in a region only in which the IS weight is bounded and use the result as an approximation to the original integral. It can be verified that the resulting estimator has a finite variance. Moreover, we also provide a normality test based method to identify the region with bounded IS weight (termed as the safe region) from the samples drawn from the standard IS distribution. With numerical examples, we demonstrate that the proposed method can yield rather reliable estimate when the standard IS fails, and it also outperforms the defensive IS, a popular method to prevent unbounded variance

    A weight-bounded importance sampling method for variance reduction

    Get PDF
    Importance sampling (IS) is an important technique to reduce the estimation variance in Monte Carlo simulations. In many practical problems, however, the use of IS method may result in unbounded variance, and thus fail to provide reliable estimates. To address the issue, we propose a method which can prevent the risk of unbounded variance; the proposed method performs the standard IS for the integral of interest in a region only in which the IS weight is bounded and use the result as an approximation to the original integral. It can be verified that the resulting estimator has a finite variance. Moreover, we also provide a normality test based method to identify the region with bounded IS weight (termed as the safe region) from the samples drawn from the standard IS distribution. With numerical examples, we demonstrate that the proposed method can yield rather reliable estimate when the standard IS fails, and it also outperforms the defensive IS, a popular method to prevent unbounded variance

    Direct-Current Generator Based on Dynamic Water-Semiconductor Junction with Polarized Water as Moving Dielectric Medium

    Full text link
    There is a rising prospective in harvesting energy from water droplets, as microscale energy is required for the distributed sensors in the interconnected human society. However, achieving a sustainable direct-current generating device from water flow is rarely reported, and the quantum polarization principle of the water molecular remains uncovered. Herein, we propose a dynamic water-semiconductor junction with moving water sandwiched between two semiconductors as a moving dielectric medium, which outputs a sustainable direct-current voltage of 0.3 V and current of 0.64 uA with low internal resistance of 390 kilohm. The sustainable direct-current electricity is originating from the dynamic water polarization process in water-semiconductor junction, in which water molecules are continuously polarized and depolarized driven by the mechanical force and Fermi level difference, during the movement of the water on silicon. We further demonstrated an encapsulated portable power-generating device with simple structure and continuous direct-current voltage, which exhibits its promising potential application in the field of wearable electronic generators

    Integrating single-cell RNA-seq and spatial transcriptomics reveals MDK-NCL dependent immunosuppressive environment in endometrial carcinoma

    Get PDF
    ObjectivesThe tumor microenvironment (TME) play important roles in progression of endometrial carcinoma (EC). We aimed to assess the cell populations in TME of EC.MethodsWe downloaded datasets of single-cell RNA-seq (scRNA-seq) and spatial transcriptome (ST) for EC from GEO, and downloaded RNA-Seq (FPKM) and clinical data of TCGA-UCEC project from TCGA. The datasets were analyzed using R software.ResultsWe obtained 5 datasets of scRNA-seq, 1 of ST and 569 samples of RNA-seq. Totally, 0.2 billion transcripts and 33,408 genes were detected in 33,162 cells from scRNA-seq. The cells were classified into 9 clusters, and EC cells were originated from epithelial cells and ciliated cells. Gene set variation analysis (GSVA) indicated that the pathways enriched in the subclusters of epithelial cells and endothelial cells were significantly different, indicating great heterogeneity in EC. Cell-cell communication analyses showed that EC cells emitted the strongest signals, and endothelial cells received more signals than other cells. Further analysis found that subclusters of 1 and 2 of epithelial cells were showed a more malignant phenotype, which may confer malignant phenotype to subcluster of 0 of endothelial cells through MK pathway by MDL-NCL signal. We also analyzed communications between spatial neighbors with ST data and confirmed the findings on MDL-NCL in cell-cell communication. TCGA and GEO analyses indicated that the expression levels of NCL was inversely correlated with ImmuneScore.ConclusionOur study revealed EC cells can confer malignant phenotype to endothelial cells by MDK-NCL signal, and NCL is associated with suppressed immune activity. EC cells may shape TME by inhibiting immune cells and “educating” stromal cells via MDK-NCL signal

    TaskMatrix.AI: Completing Tasks by Connecting Foundation Models with Millions of APIs

    Full text link
    Artificial Intelligence (AI) has made incredible progress recently. On the one hand, advanced foundation models like ChatGPT can offer powerful conversation, in-context learning and code generation abilities on a broad range of open-domain tasks. They can also generate high-level solution outlines for domain-specific tasks based on the common sense knowledge they have acquired. However, they still face difficulties with some specialized tasks because they lack enough domain-specific data during pre-training or they often have errors in their neural network computations on those tasks that need accurate executions. On the other hand, there are also many existing models and systems (symbolic-based or neural-based) that can do some domain-specific tasks very well. However, due to the different implementation or working mechanisms, they are not easily accessible or compatible with foundation models. Therefore, there is a clear and pressing need for a mechanism that can leverage foundation models to propose task solution outlines and then automatically match some of the sub-tasks in the outlines to the off-the-shelf models and systems with special functionalities to complete them. Inspired by this, we introduce TaskMatrix.AI as a new AI ecosystem that connects foundation models with millions of APIs for task completion. Unlike most previous work that aimed to improve a single AI model, TaskMatrix.AI focuses more on using existing foundation models (as a brain-like central system) and APIs of other AI models and systems (as sub-task solvers) to achieve diversified tasks in both digital and physical domains. As a position paper, we will present our vision of how to build such an ecosystem, explain each key component, and use study cases to illustrate both the feasibility of this vision and the main challenges we need to address next
    • …
    corecore