14,374 research outputs found
MATEX: A Distributed Framework for Transient Simulation of Power Distribution Networks
We proposed MATEX, a distributed framework for transient simulation of power
distribution networks (PDNs). MATEX utilizes matrix exponential kernel with
Krylov subspace approximations to solve differential equations of linear
circuit. First, the whole simulation task is divided into subtasks based on
decompositions of current sources, in order to reduce the computational
overheads. Then these subtasks are distributed to different computing nodes and
processed in parallel. Within each node, after the matrix factorization at the
beginning of simulation, the adaptive time stepping solver is performed without
extra matrix re-factorizations. MATEX overcomes the stiff-ness hinder of
previous matrix exponential-based circuit simulator by rational Krylov subspace
method, which leads to larger step sizes with smaller dimensions of Krylov
subspace bases and highly accelerates the whole computation. MATEX outperforms
both traditional fixed and adaptive time stepping methods, e.g., achieving
around 13X over the trapezoidal framework with fixed time step for the IBM
power grid benchmarks.Comment: ACM/IEEE DAC 2014. arXiv admin note: substantial text overlap with
arXiv:1505.0669
A Novel Self-Intersection Penalty Term for Statistical Body Shape Models and Its Applications in 3D Pose Estimation
Statistical body shape models are widely used in 3D pose estimation due to
their low-dimensional parameters representation. However, it is difficult to
avoid self-intersection between body parts accurately. Motivated by this fact,
we proposed a novel self-intersection penalty term for statistical body shape
models applied in 3D pose estimation. To avoid the trouble of computing
self-intersection for complex surfaces like the body meshes, the gradient of
our proposed self-intersection penalty term is manually derived from the
perspective of geometry. First, the self-intersection penalty term is defined
as the volume of the self-intersection region. To calculate the partial
derivatives with respect to the coordinates of the vertices, we employed
detection rays to divide vertices of statistical body shape models into
different groups depending on whether the vertex is in the region of
self-intersection. Second, the partial derivatives could be easily derived by
the normal vectors of neighboring triangles of the vertices. Finally, this
penalty term could be applied in gradient-based optimization algorithms to
remove the self-intersection of triangular meshes without using any
approximation. Qualitative and quantitative evaluations were conducted to
demonstrate the effectiveness and generality of our proposed method compared
with previous approaches. The experimental results show that our proposed
penalty term can avoid self-intersection to exclude unreasonable predictions
and improves the accuracy of 3D pose estimation indirectly. Further more, the
proposed method could be employed universally in triangular mesh based 3D
reconstruction
Congestion Control for Machine-Type Communications in LTE-A Networks
Collecting data from a tremendous amount of Internet-of-Things (IoT) devices for next generation networks is a big challenge. A large number of devices may lead to severe congestion in Radio Access Network (RAN) and Core Network (CN). 3GPP has specified several mechanisms to handle the congestion caused by massive amounts of devices. However, detailed settings and strategies of them are not defined in the standards and are left for operators. In this paper, we propose two congestion control algorithms which efficiently reduce the congestion. Simulation results demonstrate that the proposed algorithms can achieve 20~40% improvement regarding accept ratio, overload degree and waiting time compared with those in LTE-A
A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature
Carbon dots (CDs) as a class of heavy-metal-free fluorescent nanomaterials has drawn increasing attention in recent years due to their high optical absorptivity, chemical stability, biocompatibility, and low toxicity. Herein, we report a facile method to prepare stable CDs by hydrothermal treatment of glucose (glc) in the presence of glutathione (GSH). With this approach, the formation and the surface passivation of CDs are carried out simultaneously, resulting in intrinsic fluorescence emission. The influence of reaction temperature, reaction time and feed ratio of GSH/glc on the photoluminescence property of CDs is studied. The as-prepared CDs are characterized by UV–Vis, photoluminescence, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and transmission electron microscope, from which their structural information and property are interpreted. These CDs may be useful as pH sensors or as versatile nanothermometry devices based on the pronounced temperature dependence of their steady-state fluorescence emission spectra, which changes considerably over the physiological temperature range (15–60 °C).This work was supported by the National Natural Science Foundation of China (No. 50925207), the Natural Science Foundation of Jiangsu Province, China (BK20140157), Programme of Introducing Talents of Discipline to Universities (111 Project B13025), and the Fundamental Research Funds for the Central Universities (JUSRP11418)
- …
