318,421 research outputs found

    Intrinsic Defects and Electronic Conductivity of TaON: First-Principles Insights

    Full text link
    As a compound in between the tantalum oxide and nitride, the tantalum oxynitride TaON is expected to combine their advantages and act as an efficient visible-light-driven photocatalyst. In this letter, using hybrid functional calculations we show that TaON has different defect properties from the binary tantalum oxide and nitride: (i) instead of O or N vacancies or Ta interstitials, the ONO_N antisite is the dominant defect, which determines its intrinsic n-type conductivity and the p-type doping difficulty; (ii) the ONO_N antisite has a shallower donor level than O or N vacancies, with a delocalized distribution composed mainly of the Ta 5d5d orbitals, which gives rise to better electronic conductivity in the oxynitride than in the oxide and nitride. The phase stability analysis reveals that the easy oxidation of TaON is inevitable under O rich conditions, and a relatively O poor condition is required to synthesize stoichiometric TaON samples

    Carrier hopping in disordered semiconducting polymers: How accurate is the Miller-Abrahams model?

    Full text link
    We performed direct calculations of carrier hopping rates in strongly disordered conjugated polymers based on the atomic structure of the system, the corresponding electronic states and their coupling to all phonon modes. We found that the dependence of hopping rates on distance and the dependence of the mobility on temperature are significantly different than the ones stemming from the simple Miller-Abrahams model, regardless of the choice of the parameters in the model. A new model that satisfactorily describes the hopping rates in the system and avoids the explicit calculation of electron-phonon coupling constants was then proposed and verified. Our results indicate that, in addition to electronic density of states, the phonon density of states and the spatial overlap of the wavefunctions are the quantities necessary to properly describe carrier hopping in disordered conjugated polymers.Comment: the final version accepted for publication in Appl. Phys. Let

    Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution

    Full text link
    We introduce an approach to calculate the thermodynamic oxidation and reduction potentials of semiconductors in aqueous solution. By combining a newly-developed ab initio calculation for compound formation energy and band alignment with electrochemistry experimental data, this approach can be used to predict the stability of almost any compound semiconductor in aqueous solution. 30 photocatalytic semiconductors have been studied, and a graph (a simplified Pourbaix diagram) showing their valence/conduction band levels and oxidation/reduction potentials is produced. Based on this graph, we have studied the stabilities and trends against the oxidative and reductive photocorrosion for compound semiconductors. We found that, only metal oxides can be thermodynamically stable when used as the n-type photoanodes. All the non-oxides are unstable due to easy oxidation by the photogenerated holes, but they can be resistant to the reduction by electrons, thus stable as the p-type photocathodes

    Quantum Transport Calculations Using Periodic Boundary Conditions

    Full text link
    An efficient new method is presented to calculate the quantum transports using periodic boundary conditions. This method allows the use of conventional ground state ab initio programs without big changes. The computational effort is only a few times of a normal ground state calculation, thus it makes accurate quantum transport calculations for large systems possible.Comment: 9 pages, 6 figure

    Overlapping fragments method for electronic structure calculation of large systems

    Full text link
    We present a method for the calculation of electronic structure of systems that contain tens of thousands of atoms. The method is based on the division of the system into mutually overlapping fragments and the representation of the single-particle Hamiltonian in the basis of eigenstates of these fragments. In practice, for the range of system size that we studied (up to tens of thousands of atoms), {the dominant part of the calculation scales} linearly with the size of the system when all the states within a fixed energy interval are required. The method is highly suitable for making good use of parallel computing architectures. We illustrate the method by applying it to diagonalize the single-particle Hamiltonian obtained using the density functional theory based charge patching method in the case of amorphous alkane and polythiophene polymers.Comment: 9 pages, 10 figures, the version accepted in J. Chem. Phy
    • …
    corecore