5,724 research outputs found

    Validation of the chinese version of the oral health impact profile for TMDs (OHIP- TMDs-C)

    Get PDF
    Objectives: The aim of this study was to evaluate the reliability and validity of the the Chinese version of the Oral Health Impact Profile for TMDs (OHIP-TMDs-C). Study Design: The OHIP-TMDs was initially translated and cross-culturally adapted to Chinese following international guidelines; then subsequently validated for the psychometric characteristics of reliability and validity. In total, 156 participants with temporomandibular disorders (TMDs) were recruited to complete the questionnaire. The reliability of the OHIP-TMDs-C was evaluated using internal consistency and test-retest methods. The validity of the OHIP-TMDs-C was analysed by construct validity and convergent validity. Construct validity was determined based on factor analysis, and convergent validity by analyzing the correlation between OHIP-TMDs-C subscale scores and the global rating of oral health question. Results: Cronbach’s alpha value (internal reliability) for the total OHIP-TMDs-C score was 0.917 and the intraclass correlation coefficient (ICC) value (test–retest reliability) was 0.899. Construct validity was determined by factor analysis, extracting five factors, accounting for 78.6% of the variance. All items had factor loadings above 0.40. In terms of convergent validity, the OHIP-TMDs-C subscale was significant correlated to the global oral health rating. Conclusions: The results suggest that the OHIP-TMDs-C has good reliability and validity and thus may be used as a valuable instrument for patients with TMDs in China

    Magnetic properties of undoped Cu2O fine powders with magnetic impurities and/or cation vacancies

    Full text link
    Fine powders of micron- and submicron-sized particles of undoped Cu2O semiconductor, with three different sizes and morphologies have been synthesized by different chemical processes. These samples include nanospheres 200 nm in diameter, octahedra of size 1 micron, and polyhedra of size 800 nm. They exhibit a wide spectrum of magnetic properties. At low temperature, T = 5 K, the octahedron sample is diamagnetic. The nanosphere is paramagnetic. The other two polyhedron samples synthesized in different runs by the same process are found to show different magnetic properties. One of them exhibits weak ferromagnetism with T_C = 455 K and saturation magnetization, M_S = 0.19 emu/g at T = 5 K, while the other is paramagnetic. The total magnetic moment estimated from the detected impurity concentration of Fe, Co, and Ni, is too small to account for the observed magnetism by one to two orders of magnitude. Calculations by the density functional theory (DFT) reveal that cation vacancies in the Cu2O lattice are one of the possible causes of induced magnetic moments. The results further predict that the defect-induced magnetic moments favour a ferromagnetically coupled ground state if the local concentration of cation vacancies, n_C, exceeds 12.5%. This offers a possible scenario to explain the observed magnetic properties. The limitations of the investigations in the present work, in particular in the theoretical calculations, are discussed and possible areas for further study are suggested.Comment: 20 pages, 5 figures 2 tables, submitted to J Phys Condense Matte

    Scanning tunneling microscopy and spectroscopy of nanoscale twisted bilayer graphene

    Full text link
    Nanoscale twisted bilayer graphene (TBG) is quite instable and will change its structure to Bernal (or AB-stacking) bilayer with a much lower energy. Therefore, the lack of nanoscale TBG makes its electronic properties not accessible in experiment up to now. In this work, a special confined TBG is obtained in the overlaid area of two continuous misoriented graphene sheets. The width of the confined region of the TBG changes gradually from about 22 nm to 0 nm. By using scanning tunnelling microscopy, we studied carefully the structure and the electronic properties of the nanoscale TBG. Our results indicate that the low-energy electronic properties, including twist-induced van Hove singularities (VHSs) and spatial modulation of local density-of-state, are strongly affected by the translational symmetry breaking of the nanoscale TBG. Whereas, the electronic properties above the energy of the VHSs are almost not influenced by the quantum confinement even when the width of the TBG is reduced to only a single moire spot.Comment: 4 Figure
    • …
    corecore