169,645 research outputs found

    Fine-grained Image Classification by Exploring Bipartite-Graph Labels

    Full text link
    Given a food image, can a fine-grained object recognition engine tell "which restaurant which dish" the food belongs to? Such ultra-fine grained image recognition is the key for many applications like search by images, but it is very challenging because it needs to discern subtle difference between classes while dealing with the scarcity of training data. Fortunately, the ultra-fine granularity naturally brings rich relationships among object classes. This paper proposes a novel approach to exploit the rich relationships through bipartite-graph labels (BGL). We show how to model BGL in an overall convolutional neural networks and the resulting system can be optimized through back-propagation. We also show that it is computationally efficient in inference thanks to the bipartite structure. To facilitate the study, we construct a new food benchmark dataset, which consists of 37,885 food images collected from 6 restaurants and totally 975 menus. Experimental results on this new food and three other datasets demonstrates BGL advances previous works in fine-grained object recognition. An online demo is available at http://www.f-zhou.com/fg_demo/

    A linear time algorithm for the orbit problem over cyclic groups

    Full text link
    The orbit problem is at the heart of symmetry reduction methods for model checking concurrent systems. It asks whether two given configurations in a concurrent system (represented as finite strings over some finite alphabet) are in the same orbit with respect to a given finite permutation group (represented by their generators) acting on this set of configurations by permuting indices. It is known that the problem is in general as hard as the graph isomorphism problem, whose precise complexity (whether it is solvable in polynomial-time) is a long-standing open problem. In this paper, we consider the restriction of the orbit problem when the permutation group is cyclic (i.e. generated by a single permutation), an important restriction of the problem. It is known that this subproblem is solvable in polynomial-time. Our main result is a linear-time algorithm for this subproblem.Comment: Accepted in Acta Informatica in Nov 201

    Game Theory Via Revealed Preferences

    Get PDF
    We investigate equilibrium notions in game theory from the revealed preference approach. For extensive game forms with complete information, we derive a set of independent necessary and sufficient conditions for the observed outcomes to be rationalized by subgame perfect Nash equilibrium.
    corecore