108,745 research outputs found
A sharp stability criterion for the Vlasov-Maxwell system
We consider the linear stability problem for a 3D cylindrically symmetric
equilibrium of the relativistic Vlasov-Maxwell system that describes a
collisionless plasma. For an equilibrium whose distribution function decreases
monotonically with the particle energy, we obtained a linear stability
criterion in our previous paper. Here we prove that this criterion is sharp;
that is, there would otherwise be an exponentially growing solution to the
linearized system. Therefore for the class of symmetric Vlasov-Maxwell
equilibria, we establish an energy principle for linear stability. We also
treat the considerably simpler periodic 1.5D case. The new formulation
introduced here is applicable as well to the nonrelativistic case, to other
symmetries, and to general equilibria
Development of a thermal acoustical aircraft insulation material
A process was developed for fabricating a light weight foam suitable for thermal and acoustical insulation in aircraft. The procedures and apparatus are discussed, and the foam specimens are characterized by numerous tests and measurements
: An Excellent Candidate of Tetraquarks
We analyze various possible interpretations of the narrow state
which lies 100 MeV above threshold. This interesting state
decays mainly into instead of . If this relative branching
ratio is further confirmed by other experimental groups, we point out that the
identification of either as a state or more generally
as a state in the representation is probably
problematic. Instead, such an anomalous decay pattern strongly indicates
is a four quark state in the representation
with the quark content . We discuss its
partners in the same multiplet, and the similar four-quark states composed of a
bottom quark . Experimental searches of other members
especially those exotic ones are strongly called for
Neutron scattering measurements of phonons in nickel at elevated temperatures
Measurements of elastic and inelastic neutron scatterings from elemental nickel were made at 10, 300, 575, 875, and 1275 K. The phonon densities of states (DOSs) were calculated from the inelastic scattering and were fit with Born–von Kármán models of the lattice dynamics. With ancillary data on thermal expansion and elastic moduli, we found a small, negative anharmonic contribution to the phonon entropy at high temperature. We used this to place bounds on the magnetic entropy of nickel. A significant broadening of the phonon DOS at elevated temperatures, another indication of anharmonicity, was also measured and quantified
Diagnosability of Fuzzy Discrete Event Systems
In order to more effectively cope with the real-world problems of vagueness,
{\it fuzzy discrete event systems} (FDESs) were proposed recently, and the
supervisory control theory of FDESs was developed. In view of the importance of
failure diagnosis, in this paper, we present an approach of the failure
diagnosis in the framework of FDESs. More specifically: (1) We formalize the
definition of diagnosability for FDESs, in which the observable set and failure
set of events are {\it fuzzy}, that is, each event has certain degree to be
observable and unobservable, and, also, each event may possess different
possibility of failure occurring. (2) Through the construction of
observability-based diagnosers of FDESs, we investigate its some basic
properties. In particular, we present a necessary and sufficient condition for
diagnosability of FDESs. (3) Some examples serving to illuminate the
applications of the diagnosability of FDESs are described. To conclude, some
related issues are raised for further consideration.Comment: 14 pages; revisions have been mad
- …