45,400 research outputs found
What-and-Where to Match: Deep Spatially Multiplicative Integration Networks for Person Re-identification
Matching pedestrians across disjoint camera views, known as person
re-identification (re-id), is a challenging problem that is of importance to
visual recognition and surveillance. Most existing methods exploit local
regions within spatial manipulation to perform matching in local
correspondence. However, they essentially extract \emph{fixed} representations
from pre-divided regions for each image and perform matching based on the
extracted representation subsequently. For models in this pipeline, local finer
patterns that are crucial to distinguish positive pairs from negative ones
cannot be captured, and thus making them underperformed. In this paper, we
propose a novel deep multiplicative integration gating function, which answers
the question of \emph{what-and-where to match} for effective person re-id. To
address \emph{what} to match, our deep network emphasizes common local patterns
by learning joint representations in a multiplicative way. The network
comprises two Convolutional Neural Networks (CNNs) to extract convolutional
activations, and generates relevant descriptors for pedestrian matching. This
thus, leads to flexible representations for pair-wise images. To address
\emph{where} to match, we combat the spatial misalignment by performing
spatially recurrent pooling via a four-directional recurrent neural network to
impose spatial dependency over all positions with respect to the entire image.
The proposed network is designed to be end-to-end trainable to characterize
local pairwise feature interactions in a spatially aligned manner. To
demonstrate the superiority of our method, extensive experiments are conducted
over three benchmark data sets: VIPeR, CUHK03 and Market-1501.Comment: Published at Pattern Recognition, Elsevie
Multi-morbidities are Not a Driving Factor for an Increase of COPD-Related 30-Day Readmission Risk
Background and Objective: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the United States. COPD is expensive to treat, whereas the quality of care is difficult to evaluate due to the high prevalence of multi-morbidity among COPD patients. In the US, the Hospital Readmissions Reduction Program (HRRP) was initiated by the Centers for Medicare and Medicaid Services to penalize hospitals for excessive 30-day readmission rates for six diseases, including COPD. This study examines the difference in 30-day readmission risk between COPD patients with and without comorbidities.Methods: In this retrospective cohort study, we used Cox regression to estimate the hazard ratio of 30-day readmission rates for COPD patients who had no comorbidity and those who had one, two or three, or four or more comorbidities. We controlled for individual, hospital and geographic factors. Data came from three sources: Healthcare Cost and Utilization Project (HCUP) State Inpatient Databases (SID), Area Health Resources Files (AHRF) and the American Hospital Association’s (AHA’s) annual survey database for the year of 2013.Results: COPD patients with comorbidities were less likely to be readmitted within 30 days relative to patients without comorbidities (aHR from 0.84 to 0.87, p \u3c 0.05). In a stratified analysis, female patients with one comorbidity had a lower risk of 30-day readmission compared to female patients without comorbidity (aHR = 0.80, p \u3c 0.05). Patients with public insurance who had comorbidities were less likely to be readmitted within 30 days in comparison with those who had no comorbidity (aHR from 0.79 to 0.84, p \u3c 0.05).Conclusion: COPD patients with comorbidities had a lower risk of 30-day readmission compared with patients without comorbidity. Future research could use a different study design to identify the effectiveness of the HRRP
IDSGAN: Generative Adversarial Networks for Attack Generation against Intrusion Detection
As an important tool in security, the intrusion detection system bears the
responsibility of the defense to network attacks performed by malicious
traffic. Nowadays, with the help of machine learning algorithms, the intrusion
detection system develops rapidly. However, the robustness of this system is
questionable when it faces the adversarial attacks. To improve the detection
system, more potential attack approaches should be researched. In this paper, a
framework of the generative adversarial networks, IDSGAN, is proposed to
generate the adversarial attacks, which can deceive and evade the intrusion
detection system. Considering that the internal structure of the detection
system is unknown to attackers, adversarial attack examples perform the
black-box attacks against the detection system. IDSGAN leverages a generator to
transform original malicious traffic into adversarial malicious traffic. A
discriminator classifies traffic examples and simulates the black-box detection
system. More significantly, we only modify part of the attacks' nonfunctional
features to guarantee the validity of the intrusion. Based on the dataset
NSL-KDD, the feasibility of the model is demonstrated to attack many detection
systems with different attacks and the excellent results are achieved.
Moreover, the robustness of IDSGAN is verified by changing the amount of the
unmodified features.Comment: 8 pages, 5 figure
- …
