45,400 research outputs found

    What-and-Where to Match: Deep Spatially Multiplicative Integration Networks for Person Re-identification

    Full text link
    Matching pedestrians across disjoint camera views, known as person re-identification (re-id), is a challenging problem that is of importance to visual recognition and surveillance. Most existing methods exploit local regions within spatial manipulation to perform matching in local correspondence. However, they essentially extract \emph{fixed} representations from pre-divided regions for each image and perform matching based on the extracted representation subsequently. For models in this pipeline, local finer patterns that are crucial to distinguish positive pairs from negative ones cannot be captured, and thus making them underperformed. In this paper, we propose a novel deep multiplicative integration gating function, which answers the question of \emph{what-and-where to match} for effective person re-id. To address \emph{what} to match, our deep network emphasizes common local patterns by learning joint representations in a multiplicative way. The network comprises two Convolutional Neural Networks (CNNs) to extract convolutional activations, and generates relevant descriptors for pedestrian matching. This thus, leads to flexible representations for pair-wise images. To address \emph{where} to match, we combat the spatial misalignment by performing spatially recurrent pooling via a four-directional recurrent neural network to impose spatial dependency over all positions with respect to the entire image. The proposed network is designed to be end-to-end trainable to characterize local pairwise feature interactions in a spatially aligned manner. To demonstrate the superiority of our method, extensive experiments are conducted over three benchmark data sets: VIPeR, CUHK03 and Market-1501.Comment: Published at Pattern Recognition, Elsevie

    Multi-morbidities are Not a Driving Factor for an Increase of COPD-Related 30-Day Readmission Risk

    Get PDF
    Background and Objective: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the United States. COPD is expensive to treat, whereas the quality of care is difficult to evaluate due to the high prevalence of multi-morbidity among COPD patients. In the US, the Hospital Readmissions Reduction Program (HRRP) was initiated by the Centers for Medicare and Medicaid Services to penalize hospitals for excessive 30-day readmission rates for six diseases, including COPD. This study examines the difference in 30-day readmission risk between COPD patients with and without comorbidities.Methods: In this retrospective cohort study, we used Cox regression to estimate the hazard ratio of 30-day readmission rates for COPD patients who had no comorbidity and those who had one, two or three, or four or more comorbidities. We controlled for individual, hospital and geographic factors. Data came from three sources: Healthcare Cost and Utilization Project (HCUP) State Inpatient Databases (SID), Area Health Resources Files (AHRF) and the American Hospital Association’s (AHA’s) annual survey database for the year of 2013.Results: COPD patients with comorbidities were less likely to be readmitted within 30 days relative to patients without comorbidities (aHR from 0.84 to 0.87, p \u3c 0.05). In a stratified analysis, female patients with one comorbidity had a lower risk of 30-day readmission compared to female patients without comorbidity (aHR = 0.80, p \u3c 0.05). Patients with public insurance who had comorbidities were less likely to be readmitted within 30 days in comparison with those who had no comorbidity (aHR from 0.79 to 0.84, p \u3c 0.05).Conclusion: COPD patients with comorbidities had a lower risk of 30-day readmission compared with patients without comorbidity. Future research could use a different study design to identify the effectiveness of the HRRP

    IDSGAN: Generative Adversarial Networks for Attack Generation against Intrusion Detection

    Full text link
    As an important tool in security, the intrusion detection system bears the responsibility of the defense to network attacks performed by malicious traffic. Nowadays, with the help of machine learning algorithms, the intrusion detection system develops rapidly. However, the robustness of this system is questionable when it faces the adversarial attacks. To improve the detection system, more potential attack approaches should be researched. In this paper, a framework of the generative adversarial networks, IDSGAN, is proposed to generate the adversarial attacks, which can deceive and evade the intrusion detection system. Considering that the internal structure of the detection system is unknown to attackers, adversarial attack examples perform the black-box attacks against the detection system. IDSGAN leverages a generator to transform original malicious traffic into adversarial malicious traffic. A discriminator classifies traffic examples and simulates the black-box detection system. More significantly, we only modify part of the attacks' nonfunctional features to guarantee the validity of the intrusion. Based on the dataset NSL-KDD, the feasibility of the model is demonstrated to attack many detection systems with different attacks and the excellent results are achieved. Moreover, the robustness of IDSGAN is verified by changing the amount of the unmodified features.Comment: 8 pages, 5 figure
    corecore