54,131 research outputs found

    Air Temperature Comparison between the MMTS and the USCRN Temperature Systems

    Get PDF
    A new U.S. Climate Reference Network (USCRN) was officially and nationally commissioned by the Department of Commerce and the National Oceanic and Atmospheric Administration in 2004. During a 1-yr side-by-side field comparison of USCRN temperatures and temperatures measured by a maximum-minimum temperature system (MMTS), analyses of hourly data show that the MMTS temperature performed with biases: 1) a systematic bias–ambient-temperature-dependent bias and 2) an ambient-solar-radiation- and ambient-wind- speed-dependent bias. Magnitudes of these two biases ranged from a few tenths of a degree to over 1C compared to the USCRN temperatures. The hourly average temperatures for the USCRN were the dependent variables in the development of two statistical models that remove the biases due to ambient temperature, ambient solar radiation, and ambient wind speed in the MMTS. The model performance was examined, and the results show that the adjusted MMTS data were substantially improved with respect to both systematic bias and the bias associated with ambient solar radiation and ambient wind speed. In addition, the results indicate that the historical temperature datasets prior to the MMTS era need to be further investigated to produce long-term homogenous times series of area-average temperature

    Provenance analysis for instagram photos

    Get PDF
    As a feasible device fingerprint, sensor pattern noise (SPN) has been proven to be effective in the provenance analysis of digital images. However, with the rise of social media, millions of images are being uploaded to and shared through social media sites every day. An image downloaded from social networks may have gone through a series of unknown image manipulations. Consequently, the trustworthiness of SPN has been challenged in the provenance analysis of the images downloaded from social media platforms. In this paper, we intend to investigate the effects of the pre-defined Instagram images filters on the SPN-based image provenance analysis. We identify two groups of filters that affect the SPN in quite different ways, with Group I consisting of the filters that severely attenuate the SPN and Group II consisting of the filters that well preserve the SPN in the images. We further propose a CNN-based classifier to perform filter-oriented image categorization, aiming to exclude the images manipulated by the filters in Group I and thus improve the reliability of the SPN-based provenance analysis. The results on about 20, 000 images and 18 filters are very promising, with an accuracy higher than 96% in differentiating the filters in Group I and Group II

    Performance of Photosensors in the PandaX-I Experiment

    Full text link
    We report the long term performance of the photosensors, 143 one-inch R8520-406 and 37 three-inch R11410-MOD photomultipliers from Hamamatsu, in the first phase of the PandaX dual-phase xenon dark matter experiment. This is the first time that a significant number of R11410 photomultiplier tubes were operated in liquid xenon for an extended period, providing important guidance to the future large xenon-based dark matter experiments.Comment: v3 as accepted by JINST with modifications based on reviewers' comment

    Twisted and Nontwisted Bifurcations Induced by Diffusion

    Full text link
    We discuss a diffusively perturbed predator-prey system. Freedman and Wolkowicz showed that the corresponding ODE can have a periodic solution that bifurcates from a homoclinic loop. When the diffusion coefficients are large, this solution represents a stable, spatially homogeneous time-periodic solution of the PDE. We show that when the diffusion coefficients become small, the spatially homogeneous periodic solution becomes unstable and bifurcates into spatially nonhomogeneous periodic solutions. The nature of the bifurcation is determined by the twistedness of an equilibrium/homoclinic bifurcation that occurs as the diffusion coefficients decrease. In the nontwisted case two spatially nonhomogeneous simple periodic solutions of equal period are generated, while in the twisted case a unique spatially nonhomogeneous double periodic solution is generated through period-doubling. Key Words: Reaction-diffusion equations; predator-prey systems; homoclinic bifurcations; periodic solutions.Comment: 42 pages in a tar.gz file. Use ``latex2e twisted.tex'' on the tex files. Hard copy of figures available on request from [email protected]

    Air Temperature Comparison between the MMTS and the USCRN Temperature Systems

    Get PDF
    A new U.S. Climate Reference Network (USCRN) was officially and nationally commissioned by the Department of Commerce and the National Oceanic and Atmospheric Administration in 2004. During a 1-yr side-by-side field comparison of USCRN temperatures and temperatures measured by a maximum-minimum temperature system (MMTS), analyses of hourly data show that the MMTS temperature performed with biases: 1) a systematic bias–ambient-temperature-dependent bias and 2) an ambient-solar-radiation- and ambient-wind- speed-dependent bias. Magnitudes of these two biases ranged from a few tenths of a degree to over 1C compared to the USCRN temperatures. The hourly average temperatures for the USCRN were the dependent variables in the development of two statistical models that remove the biases due to ambient temperature, ambient solar radiation, and ambient wind speed in the MMTS. The model performance was examined, and the results show that the adjusted MMTS data were substantially improved with respect to both systematic bias and the bias associated with ambient solar radiation and ambient wind speed. In addition, the results indicate that the historical temperature datasets prior to the MMTS era need to be further investigated to produce long-term homogenous times series of area-average temperature

    Air Temperature Errors Caused by Air Filter and Construction Effects on HMP45C Temperature Sensors in Weather Stations

    Get PDF
    For non–ventilated air temperature measurements at weather stations, both ambient wind speed and solar radiation are known to affect the magnitude of air temperature measurement errors. The objective of this study is to explore the effect of the sensor’s housing and to quantify any stagnation or conduction errors. The HMP45C temperature and relative humidity sensor with a Gill radiation shield is widely used in remote monitoring sites. The use of a filter in the HMP45C leads to loss of ventilation, while the protrusion of the sensor housing below the Gill shield exposes it to radiation loading and potentially increased conduction of heat to the sensor. The HMP45C sensors were deployed with and without an air filter in both standard Gill shields and in a Gill shield modified with extra plates to completely cover the base of the sensor housing. The data collected were examined using spectral analysis and statistical methods. Results show that both average air temperature errors and variations of air temperature errors were smaller in the HMP45C sensors when the manufacturer–supplied air filter was removed. The ranges of the three–sigma errors can be decreased by 0.4°C to 0.7°C and the accuracy of monthly average air temperature can be improved at least 0.1°C by employing an HMP45C without the air filter. Results suggest that the maximum air temperature taken with the filter may reach more than 1.0°C higher than that taken without the filter. The major frequency component contributing to air temperature errors using the HMP45C sensor in the Gill shield is the frequency of one day per cycle, which is expected. Partial radiation blocking combined with aspiration significantly reduces the contribution of the one–day cycle. In field tests, the R. M. Young aspirated temperature system proved very accurate compared to an aspirated precision industrial platinum resistance thermometer (PRT)

    Phase dynamics of inductively coupled intrinsic Josephson junctions and terahertz electromagnetic radiation

    Full text link
    The Josephson effects associated with quantum tunneling of Cooper pairs manifest as nonlinear relations between the superconductivity phase difference and the bias current and voltage. Many novel phenomena appear, such as Shapiro steps in dc cuurent-voltage (IV) characteristics of a Josephson junction under microwave shining, which can be used as a voltage standard. Inversely, the Josephson effects provide a unique way to generate high-frequency electromagnetic (EM) radiation by dc bias voltage. The discovery of cuprate high-Tc superconductors accelerated the effort to develop novel source of EM waves based on a stack of atomically dense-packed intrinsic Josephson junctions (IJJs), since the large superconductivity gap covers the whole terahertz frequency band. Very recently, strong and coherent terahertz radiations have been successfully generated from a mesa structure of Bi2Sr2CaCu2O8+δ\rm{Bi_2Sr_2CaCu_2O_{8+\delta}} single crystal which works both as the source of energy gain and as the cavity for resonance. It is then found theoretically that, due to huge inductive coupling of IJJs produced by the nanometer junction separation and the large London penetration depth of order of μm\rm{\mu m} of the material, a novel dynamic state is stabilized in the coupled sine-Gordon system, in which ±π\pm \pi kinks in phase differences are developed responding to the standing wave of Josephson plasma and are stacked alternatively in the c-axis. This novel solution of the inductively coupled sine-Gordon equations captures the important features of experimental observations. The theory predicts an optimal radiation power larger than the one available to date by orders of magnitude, and thus suggests the technological relevance of the phenomena.Comment: review article (69 pages, 30 figures
    • …
    corecore