56 research outputs found

    Solubility of Nonelectrolytes: A First-Principles Computational Approach

    No full text
    Using a combination of classical molecular dynamics and symmetry adapted intermolecular perturbation theory, we develop a high-accuracy computational method for examining the solubility energetics of nonelectrolytes. This approach is used to accurately compute the cohesive energy density and Hildebrand solubility parameters of 26 molecular liquids. The energy decomposition of symmetry adapted perturbation theory is then utilized to develop multicomponent Hansen-like solubility parameters. These parameters are shown to reproduce the solvent categorizations (nonpolar, polar aprotic, or polar protic) of all molecular liquids studied while lending quantitative rigor to these qualitative categorizations via the introduction of simple, easily computable parameters. Notably, we find that by monitoring the first-order exchange energy contribution to the total interaction energy, one can rigorously determine the hydrogen bonding character of a molecular liquid. Finally, this method is applied to compute explicitly the Flory interaction parameter and the free energy of mixing for two different small molecule mixtures, reproducing the known miscibilities. This methodology represents an important step toward the prediction of molecular solubility from first principles

    Ligand Mediation of Vectorial Charge Transfer in Cu(I)diimine Chromophore–Acceptor Dyads

    No full text
    In this work, we present the photoinduced charge separation dynamics of four molecular dyads composed of heteroleptic Cu­(I)­bis­(phenanthroline) chromophores linked directly to the common electron acceptor naphthalene diimide. The dyads were designed to allow us to (1) detect any kinetic preference for directionality during photoinduced electron transfer across the heteroleptic complex and (2) probe the influence of excited-state flattening on intramolecular charge separation. Singular value decomposition of ultrafast optical transient absorption spectra demonstrates that charge transfer occurs with strong directional preference, and charge separation occurs up to 35 times faster when the acceptor is linked to the sterically blocking ligand. Further, the charge-separated state in these dyads is stabilized by polar solvents, resulting in dramatically longer lifetimes for dyads with minimal substitution about the Cu­(I) center. This unexpected but exciting observation suggests a new approach to the design of Cu­(I)­bis­(phenanthroline) chromophores that can support long-lived vectorial charge separation

    Photodriven Charge Separation Dynamics in CdSe/ZnS Core/Shell Quantum Dot/Cobaloxime Hybrid for Efficient Hydrogen Production

    No full text
    Photodriven charge-transfer dynamics and catalytic properties have been investigated for a hybrid system containing CdSe/ZnS core/shell quantum dots (QDs) and surface-bound molecular cobaloxime catalysts. The electron transfer from light-excited QDs to cobaloxime, revealed by optical transient absorption spectroscopy, takes place with an average time constant of 105 ps, followed a much slower charge recombination process with a time constant of ≫3 ns. More interestingly, we also observed photocatalytic hydrogen generation by this QD/cobaloxime hybrid system, with >10 000 turnovers of H<sub>2</sub> per QD in 10 h, using triethanolamine as a sacrificial electron donor. These results suggest that QD/cobaloxime hybrids succeed in coupling single-photon events with multielectron redox catalytic reactions, and such systems could have potential applications in long-lived artificial photosynthetic devices for fuel generation from sunlight

    A Simple Index for Characterizing Charge Transport in Molecular Materials

    No full text
    While advances in quantum chemistry have rendered the accurate prediction of band alignment relatively straightforward, the ability to forecast a noncrystalline, multimolecule system’s conductivity possesses no simple computational form. Adapting the theory of classical resistor networks, we develop an index for quantifying charge transport in bulk molecular materials, without the requirement of crystallinity. The basic behavior of this index is illustrated through its application to simple lattices and clusters of common organic photovoltaic molecules, where it is shown to reproduce experimentally known performances for these materials. This development provides a quantitative computational means for determining <i>a priori</i> the bulk charge transport properties of molecular materials

    Solution Phase Exciton Diffusion Dynamics of a Charge-Transfer Copolymer <b>PTB7</b> and a Homopolymer <b>P3HT</b>

    No full text
    Using ultrafast polarization-controlled transient absorption (TA) measurements, dynamics of the initial exciton states were investigated on the time scale of tens of femtoseconds to about 80 ps in two different types of conjugated polymers extensively used in active layers of organic photovoltaic devices. These polymers are poly­(3-fluorothienothiophenebenzodithiophene) (<b>PTB7</b>) and poly-3-hexylthiophene (<b>P3HT</b>), which are charge-transfer polymers and homopolymers, respectively. In <b>PTB7</b>, the initial excitons with excess vibrational energy display two observable ultrafast time constants, corresponding to coherent exciton diffusion before the vibrational relaxation, and followed by incoherent exciton diffusion processes to a neighboring local state after the vibrational relaxation. In contrast, <b>P3HT</b> shows only one exciton diffusion or conformational motion time constant of 34 ps, even though its exciton decay kinetics are multiexponential. Based on the experimental results, an exciton dynamics mechanism is conceived taking into account the excitation energy and structural dependence in coherent and incoherent exciton diffusion processes, as well as other possible deactivation processes including the formation of the pseudo-charge-transfer and charge separate states, as well as interchain exciton hopping or coherent diffusion

    Mesoscopic Features of Charge Generation in Organic Semiconductors

    No full text
    ConspectusIn the past two decades, organic materials have been extensively investigated by numerous research groups worldwide for implementation in organic photovoltaic (OPV) devices. The interest in organic semiconductors is spurred by their potential low cost and facile tunability, making OPV devices a potentially disruptive technology. To study OPV operating mechanisms is also to explore a knowledge gap in our general understanding of materials, because both the time scales (femtosecond to microsecond) and length scales (nanometer to micrometer) relevant to OPV functionality occupy a challenging and fascinating space between the traditional regimes of quantum chemistry and solid-state physics.New theoretical frameworks and computational tools are needed to bridge the aforementioned length and time scales, and they must satisfy the criteria of computational tractability for systems involving 10<sup>4</sup>–10<sup>6</sup> atoms, while also maintaining predictive utility. While this challenge is far from solved, advances in density functional theory (DFT) have allowed researchers to investigate the ground- and excited-state properties of many intermediate sized systems (10<sup>2</sup>–10<sup>3</sup> atoms) that provide the outlines of the larger problem. Results on these smaller systems are already sufficient to predict optical gaps and trends in valence band energies, correct erroneous interpretations of experimental data, and develop models for charge generation and transport in OPV devices.The active films of high-efficiency OPV devices are comprised of mesoscopic mixtures of electron donor (D) and electron acceptor (A) species, a “bulk-heterojunction” (BHJ) device, subject to variable degrees of structural disorder. Depending on the degree of intermolecular electronic coupling and energy level alignment, the spatial delocalization of photoexcitations and charge carriers can affect the dynamics of the solar cell. In this Account, we provide an overview of three pivotal characteristics of solar cells that possess strong delocalization dependence: (1) the exciton binding energy, (2) charge transfer at the D–A heterojunction, and (3) the energy landscape in the vicinity of the D–A heterojunction. In each case, the length scale dependence can be assessed through DFT calculations on reference systems, with a view to establishing general trends. Throughout the discussion, we draw from the experimental and theoretical literature to provide a consistent view of what is known about these properties in actual BHJ blends. A consistent interpretation of the results to date affords the following view: transient delocalization effects and resonant charge transfer at the heterojunction are capable of funneling excitations away from trap states and mediating exciton dissociation; these factors alone are capable of explaining the remarkably good charge generation currently achieved in OPV devices. The exciton binding energy likely plays a minimal role in modern OPV devices, since the presence of the heterojunction serves to bypass the costly exciton-to-free-charge transition state

    Direct Observation of Insulin Association Dynamics with Time-Resolved X‑ray Scattering

    No full text
    Biological functions frequently require protein–protein interactions that involve secondary and tertiary structural perturbation. Here we study protein–protein dissociation and reassociation dynamics in insulin, a model system for protein oligomerization. Insulin dimer dissociation into monomers was induced by a nanosecond temperature-jump (T-jump) of ∌8 °C in aqueous solution, and the resulting protein and solvent dynamics were tracked by time-resolved X-ray solution scattering (TRXSS) on time scales of 10 ns to 100 ms. The protein scattering signals revealed the formation of five distinguishable transient species during the association process that deviate from simple two-state kinetics. Our results show that the combination of T-jump pump coupled to TRXSS probe allows for direct tracking of structural dynamics in nonphotoactive proteins

    The Next Breakthrough for Organic Photovoltaics?

    No full text
    While the intense focus on energy level tuning in organic photovoltaic materials has afforded large gains in device performance, we argue here that strategies based on microstructural/morphological control are at least as promising in any rational design strategy. In this work, a meta-analysis of ∌150 bulk heterojunction devices fabricated with different materials combinations is performed and reveals strong correlations between power conversion efficiency and morphology-dominated properties (short-circuit current, fill factor) and surprisingly weak correlations between efficiency and energy level positioning (open-circuit voltage, enthalpic offset at the interface, optical gap). While energy level positioning should in principle provide the theoretical maximum efficiency, the optimization landscape that must be navigated to reach this maximum is unforgiving. Thus, research aimed at developing understanding-based strategies for more efficient optimization of an active layer microstructure and morphology are likely to be at least as fruitful

    Size-Dependent Coherent-Phonon Plasmon Modulation and Deformation Characterization in Gold Bipyramids and Nanojavelins

    No full text
    Localized surface plasmon resonances (LSPRs) arising from metallic nanoparticles offer an array of prospective applications that range from chemical sensing to biotherapies. Bipyramidal particles exhibit particularly narrow ensemble LSPR resonances that reflect small dispersity of size and shape but until recently were only synthetically accessible over a limited range of sizes with corresponding aspect ratios. Narrow size dispersion offers the opportunity to examine ensemble dynamical phenomena such as coherent phonons that induce periodic oscillations of the LSPR energy. Here, we characterize transient optical behavior of a large range of gold bipyramid sizes, as well as higher aspect ratio nanojavelin ensembles with specific attention to the lowest-order acoustic phonon mode of these nanoparticles. We report coherent phonon-driven oscillations of the LSPR position for particles with resonances spanning 670 to 1330 nm. Nanojavelins were shown to behave similarly to bipyramids but offer the prospect of separate control over LSPR energy and coherent phonon oscillation period. We develop a new methodology for quantitatively measuring mechanical expansion caused by photogenerated coherent phonons. Using this method, we find an elongation of approximately 1% per photon absorbed per unit cell and that particle expansion along the lowest frequency acoustic phonon mode is linearly proportional to excitation fluence for the fluence range studied. These characterizations provide insight regarding means to manipulate phonon period and transient mechanical deformation

    Ultrafast Intramolecular Exciton Splitting Dynamics in Isolated Low-Band-Gap Polymers and Their Implications in Photovoltaic Materials Design

    No full text
    Record-setting organic photovoltaic cells with <b>PTB</b> polymers have recently achieved ∌8% power conversion efficiencies (PCE). A subset of these polymers, the <b>PTBF</b> series, has a common conjugated backbone with alternating thieno­[3,4-<i>b</i>]­thiophene and benzodithiophene moieties but differs by the number and position of pendant fluorine atoms attached to the backbone. These electron-withdrawing pendant fluorine atoms fine tune the energetics of the polymers and result in device PCE variations of 2–8%. Using near-IR, ultrafast optical transient absorption (TA) spectroscopy combined with steady-state electrochemical methods we were able to obtain TA signatures not only for the exciton and charge-separated states but also for an intramolecular (“pseudo”) charge-transfer state in isolated <b>PTBF</b> polymers in solution, in the absence of the acceptor phenyl-C<sub>61</sub>-butyric acid methyl ester (<b>PCBM</b>) molecules. This led to the discovery of branched pathways for intramolecular, ultrafast exciton splitting to populate (a) the charge-separated states or (b) the intramolecular charge-transfer states on the subpicosecond time scale. Depending on the number and position of the fluorine pendant atoms, the charge-separation/transfer kinetics and their branching ratios vary according to the trend for the electron density distribution in favor of the local charge-separation direction. More importantly, a linear correlation is found between the branching ratio of intramolecular charge transfer and the charge separation of hole–electron pairs in isolated polymers versus the device fill factor and PCE. The origin of this correlation and its implications in materials design and device performance are discussed
    • 

    corecore