83,902 research outputs found

    Green's function for the Relativistic Coulomb System via Sum Over Perturbation Series

    Full text link
    We evaluate the Green's function of the D-dimensional relativistic Coulomb system via sum over perturbation series which is obtained by expanding the exponential containing the potential term V(x)V({\bf x)} in the path integral into a power series. The energy spectra and wave functions are extracted from the resulting amplitude.Comment: 13 pages, ReVTeX, no figure

    Analysis of effects of macroscopic propagation and multiple molecular orbitals on the minimum in high-order harmonic generation of aligned CO2_{2}

    Get PDF
    We report theoretical calculations on the effect of the multiple orbital contribution in high-order harmonic generation (HHG) from aligned CO2_2 with inclusion of macroscopic propagation of harmonic fields in the medium. Our results show very good agreements with recent experiments for the dynamics of the minimum in HHG spectra as laser intensity or alignment angle changes. Calculations are carried out to check how the position of the minimum in HHG spectra depends on the degrees of molecular alignment, laser focusing conditions, and the effects of alignment-dependent ionization rates of the different molecular orbitals. These analyses help to explain why the minima observed in different experiments may vary.Comment: 7 figure

    Path integral for a relativistic Aharonov-Bohm-Coulomb system

    Full text link
    The path integral for the relativistic spinless Aharonov-Bohm-Coulomb system is solved, and the energy spectra are extracted from the resulting amplitude.Comment: 6 pages, Revte

    Production of Milky Way structure by the Magellanic Clouds

    Get PDF
    Previous attempts at disturbing the galactic disk by the Magellanic Clouds relied on direct tidal forcing. However, by allowing the halo to actively respond rather than remain a rigid contributor to the rotation curve, the Clouds may produce a wake in the halo which then distorts the disk. Recent work reported here suggests that the Magellanic Clouds use this mechanism to produce disk distortions sufficient to account for both the radial location, position angle and sign of the HI warp and observed anomalies in stellar kinematics towards the galactic anticenter and LSR motion.Comment: 8 pages, uuencoded compressed PostScript, no figures, html version with figures and mpeg simulations available at http://www-astro.phast.umass.edu/Preprints/martin/martin1/lmc_online.htm

    Signal of Bose condensation in an optical lattice at finite temperature

    Full text link
    We discuss the experimental signal for the Bose condensation of cold atoms in an optical lattice at finite temperature. Instead of using the visibility of the interference pattern via the time-of-flight imaging, we show that the momentum space density profile in the first Brillouin zone, in particular its bimodal distribution, provides an unambiguous signal for the Bose condensation. We confirm this point with detailed calculation of the change in the atomic momentum distribution across the condensation phase transition, taking into account both the global trapping potential and the atomic interaction effects.Comment: 4 pages, 2 figures, replaced with the published versio

    The Dynamical Additivity And The Strong Dynamical Additivity Of Quantum Operations

    Full text link
    In the paper, the dynamical additivity of bi-stochastic quantum operations is characterized and the strong dynamical additivity is obtained under some restrictions.Comment: 9 pages, LaTeX, change the order of name

    Synchronization of One Dimensional Array of Point Josephson Junctions Coupled to a Common Load

    Full text link
    We study the synchronization in a one dimensional array of point Josephson junctions coupled to a common capacitor, which establishes a long-range interaction between junctions and synchronizes them. The stability diagram of synchronization in a noise-free system is obtained. The current when junctions transform from resistive state into superconducting state, is then calculated and its dependence on the shunt parameters and the dissipation of junctions is revealed. In the presence of thermal noise, the synchronized oscillations are destroyed at a critical temperature and the system undergoes a continuous phase transition of desynchronization. A possible stability diagram of the synchronized oscillations with respect to thermal noise, current, dissipations and shunt capacitance is then constructed. Finally we investigate the dynamic relaxation from random oscillations into synchronized state. The relaxation time increases with the system size and temperature, but is reduced by the shunt capacitor.Comment: 11.2 pages, 14 figure

    Directed percolation near a wall

    Full text link
    Series expansion methods are used to study directed bond percolation clusters on the square lattice whose lateral growth is restricted by a wall parallel to the growth direction. The percolation threshold pcp_c is found to be the same as that for the bulk. However the values of the critical exponents for the percolation probability and mean cluster size are quite different from those for the bulk and are estimated by β1=0.7338±0.0001\beta_1 = 0.7338 \pm 0.0001 and γ1=1.8207±0.0004\gamma_1 = 1.8207 \pm 0.0004 respectively. On the other hand the exponent Δ1=β1+γ1\Delta_1=\beta_1 +\gamma_1 characterising the scale of the cluster size distribution is found to be unchanged by the presence of the wall. The parallel connectedness length, which is the scale for the cluster length distribution, has an exponent which we estimate to be ν1∥=1.7337±0.0004\nu_{1\parallel} = 1.7337 \pm 0.0004 and is also unchanged. The exponent τ1\tau_1 of the mean cluster length is related to β1\beta_1 and ν1∥\nu_{1\parallel} by the scaling relation ν1∥=β1+τ1\nu_{1\parallel} = \beta_1 + \tau_1 and using the above estimates yields τ1=1\tau_1 = 1 to within the accuracy of our results. We conjecture that this value of τ1\tau_1 is exact and further support for the conjecture is provided by the direct series expansion estimate τ1=1.0002±0.0003\tau_1= 1.0002 \pm 0.0003.Comment: 12pages LaTeX, ioplppt.sty, to appear in J. Phys.

    Ground states of hard-core bosons in one dimensional periodic potentials

    Full text link
    With Girardeau's Fermi-Bose mapping, we find the exact ground states of hard-core bosons residing in a one dimensional periodic potential. The analysis of these ground states shows that when the number of bosons NN is commensurate with the number of wells MM in the periodic potential, the boson system is a Mott insulator whose energy gap, however, is given by the single-particle band gap of the periodic potential; when NN is not commensurate with MM, the system is a metal (not a superfluid). In fact, we argue that there may be no superfluid phase for any one-dimensional boson system in terms of Landau's criterion of superfluidity. The Kronig-Penney potential is used to illustrate our results.Comment: 6 pages, 6 figure
    • …
    corecore