114 research outputs found

    Neutrino Flavor Ratio on Earth and at Astrophysical Sources

    Full text link
    We present the reconstruction of neutrino flavor ratios at astrophysical sources. For distinguishing the pion source and the muon-damped source to the 3σ\sigma level, the neutrino flux ratios, R≡ϕ(νμ)/(ϕ(νe)+ϕ(ντ))R\equiv\phi(\nu_\mu)/(\phi(\nu_e)+\phi(\nu_\tau)) and S≡ϕ(νe)/ϕ(ντ)S\equiv\phi(\nu_e)/\phi(\nu_\tau), need to be measured in accuracies better than 10%.Comment: 3 pages, 8 figures. Talk presented by T.C. Liu in ERICE 2009, Sicily

    Probing annihilations and decays of low-mass galactic dark matter in IceCube DeepCore array: Track events

    Full text link
    The deployment of DeepCore array significantly lowers IceCube's energy threshold to about 10 GeV and enhances the sensitivity of detecting neutrinos from annihilations and decays of light dark matter. To match this experimental development, we calculate the track event rate in DeepCore array due to neutrino flux produced by annihilations and decays of galactic dark matter. We also calculate the background event rate due to atmospheric neutrino flux for evaluating the sensitivity of DeepCore array to galactic dark matter signatures. Unlike previous approaches, which set the energy threshold for track events at around 50 GeV (this choice avoids the necessity of including oscillation effect in the estimation of atmospheric background event rate), we have set the energy threshold at 10 GeV to take the full advantage of DeepCore array. We compare our calculated sensitivity with those obtained by setting the threshold energy at 50 GeV. We conclude that our proposed threshold energy significantly improves the sensitivity of DeepCore array to the dark matter signature for mχ<100m_{\chi}< 100 GeV in the annihilation scenario and mχ<300m_{\chi}<300 GeV in the decay scenario.Comment: 19 pages, 5 figures; match the published versio

    Tau Neutrino Astronomy in GeV Energies

    Full text link
    We point out the opportunity of the tau neutrino astronomy for the neutrino energy E ranging between 10 GeV and 10^3 GeV. In this energy range, the intrinsic tau neutrino production is suppressed relative to the intrinsic muon neutrino production. Any sizable tau neutrino flux may thus arise because of the \nu_{\mu}\to \nu_{\tau} neutrino oscillations only. It is demonstrated that, in the presence of the neutrino oscillations, consideration of the neutrino flavor dependence in the background atmospheric neutrino flux leads to the drastically different prospects between the observation of the astrophysical muon neutrinos and that of the astrophysical tau neutrinos. Taking the galactic-plane neutrino flux as the targeted astrophysical source, we have found that the galactic-plane tau neutrino flux dominates over the atmospheric tau neutrino flux for E > 10 GeV. Hence, the galactic-plane can at least in principle be seen through the tau neutrinos with energies just greater than 10 GeV. In a sharp contrast, the galactic-plane muon neutrino flux is overwhelmed by its atmospheric background until E > 10^6 GeV.Comment: major revision of text and two new figures, to appear in PR

    A New Type of Plasma Wakefield Accelerator Driven by Magnetowaves

    Full text link
    We present a new concept for a plasma wakefield accelerator driven by magnetowaves (MPWA). This concept was originally proposed as a viable mechanism for the "cosmic accelerator" that would accelerate cosmic particles to ultra high energies in the astrophysical setting. Unlike the more familiar Plasma Wakefield Accelerator (PWFA) and the Laser Wakefield Accelerator (LWFA) where the drivers, the charged-particle beam and the laser, are independently existing entities, MPWA invokes the high-frequency and high-speed whistler mode as the driver, which is a medium wave that cannot exist outside of the plasma. Aside from the difference in drivers, the underlying mechanism that excites the plasma wakefield via the ponderomotive potential is common. Our computer simulations show that under appropriate conditions, the plasma wakefield maintains very high coherence and can sustain high-gradient acceleration over many plasma wavelengths. We suggest that in addition to its celestial application, the MPWA concept can also be of terrestrial utility. A proof-of-principle experiment on MPWA would benefit both terrestrial and celestial accelerator concepts.Comment: revtex4, 4 pages, 6 figure

    Chiral Lagrangians for Radiative Decays of Heavy Hadrons

    Full text link
    The radiative decays of heavy mesons and heavy baryons are studied in a formalism which incorporates both the heavy quark symmetry and the chiral symmetry. The chiral Lagrangians for the electromagnetic interactions of heavy hadrons consist of two pieces: one from gauging electromagnetically the strong-interaction chiral Lagrangian, and the other from the anomalous magnetic moment interactions of the heavy baryons and mesons. Due to the heavy quark spin symmetry, the latter contains only one independent coupling constant in the meson sector and two in the baryon sector. These coupling constants only depend on the light quarks and can be calculated in the nonrelativistic quark model. However, the charm quark is not heavy enough and the contribution from its magnetic moment must be included. Applications to the radiative decays D∗→Dγ , B∗→Bγ , Ξc′→Ξcγ ,Σc→ΛcγD^\ast \rightarrow D \gamma~,~B^\ast \rightarrow B \gamma~,~ \Xi^\prime_c \rightarrow \Xi_c \gamma~, \Sigma_c \rightarrow \Lambda_c \gamma and Σc→Λcπγ\Sigma_c \rightarrow \Lambda_c \pi \gamma are given. Together with our previous results on the strong decay rates of D∗→DπD^\ast \rightarrow D \pi and Σc→Λcπ\Sigma_c \rightarrow \Lambda_c \pi, predictions are obtained for the total widths and branching ratios of D∗D^\ast and Σc\Sigma_c. The decays Σc+→Λc+π0γ\Sigma^+_c \rightarrow \Lambda^+_c \pi^0 \gamma and Σc0→Λc+π−γ\Sigma^0_c \rightarrow \Lambda^+_c \pi^- \gamma are discussed to illustrate the important roles played by both the heavy quark symmetry and the chiral symmetry.Comment: 30 pages (one figure, available on request), CLNS 92/1158 and IP-ASTP-13-9

    Effective Lagrangian Approach to Weak Radiative Decays of Heavy Hadrons

    Full text link
    Motivated by the observation of the decay Bˉ→Kˉ∗γ\bar{B}\to \bar{K}^*\gamma by CLEO, we have systematically analyzed the two-body weak radiative decays of bottom and charmed hadrons. There exist two types of weak radiative decays: One proceeds through the short-distance b→sγb\to s\gamma transition and the other occurs through WW-exchange accompanied by a photon emission. Effective Lagrangians are derived for the WW-exchange bremsstrahlung processes at the quark level and then applied to various weak electromagnetic decays of heavy hadrons. Predictions for the branching ratios of Bˉ0→D∗0γ, Λb0→Σc0γ, Ξb0→Ξc0γ\bar{B}^0\to D^{*0} \gamma,~\Lambda_b^0\to\Sigma_c^0\gamma,~\Xi_b^0\to \Xi_c^0\gamma and \Xi_b^0\to\xip_c^0\gamma are given. In particular, we found B(Bˉ0→D∗0γ)≈0.9×10−6{\cal B}(\bar{B}^0 \to D^{*0}\gamma)\approx 0.9\times 10^{-6}. Order of magnitude estimates for the weak radiative decays of charmed hadrons:  D0→Kˉ∗0γ, Λc+→Σ+γ~D^0\to \bar{K}^{*0}\gamma,~\Lambda_c^+\to\Sigma^+\gamma and Ξc0→Ξ0γ\Xi_c^0\to\Xi^0\gamma are also presented. Within this approach, the decay asymmetry for antitriplet to antitriplet heavy baryon weak radiative transitions is uniquely predicted by heavy quark symmetry. The electromagnetic penguin contribution to Λb0→Λγ\Lambda_b^0\to\Lambda\gamma is estimated by two different methods and its branching ratio is found to be of order 1×10−51\times 10^{-5}. We conclude that weak radiative decays of bottom hadrons are dominated by the short-distance b→sγb\to s\gamma mechanism.Comment: 28 pages + 3 figures (not included), CLNS 94/1278, IP-ASTP-04-94. [Main changes in this revised version: (i) Sect 2 and subsection 4.1 are revised, (ii) A MIT bag method for calculating the decay rate of Lambdab→Λ+gammaLambda_b \to\Lambda+gamma is presented, (iii) All predictions are updated using the newly available 1994 Particle Data Group, and (iv) Appendix and subsections 3.3 and 4.4 are deleted.

    Corrections to Chiral Dynamics of Heavy Hadrons: (I) 1/M Correction

    Full text link
    In earlier publications we have analyzed the strong and radiative decays of heavy hadrons in a formalism which incorporates both heavy-quark and chiral symmetries. In particular, we have derived a heavy-hadron chiral Lagrangian whose coupling constants are related by the heavy-quark flavor-spin symmetry arising from the QCD Lagrangian with infinitely massive quarks. In this paper, we re-examine the structure of the above chiral Lagrangian by including the effects of 1/mQ1/m_Q corrections in the heavy quark effective theory. The relations among the coupling constants, originally derived in the heavy-quark limit, are modified by heavy quark symmetry breaking interactions in QCD. Some of the implications are discussed.Comment: PHYZZX, 45 pages, 1 figure (not included), CLNS 93/1192, IP-ASTP-02-93, ITP-SB-93-0
    • …
    corecore