107,637 research outputs found
First-principles Calculations of Engineered Surface Spin Structures
The engineered spin structures recently built and measured in scanning
tunneling microscope experiments are calculated using density functional
theory. By determining the precise local structure around the surface
impurities, we find the Mn atoms can form molecular structures with the binding
surface, behaving like surface molecular magnets. The spin structures are
confirmed to be antiferromagnetic, and the exchange couplings are calculated
within 8% of the experimental values simply by collinear-spin GGA+U
calculations. We can also explain why the exchange couplings significantly
change with different impurity binding sites from the determined local
structure. The bond polarity is studied by calculating the atomic charges with
and without the Mn adatoms
Vacuum polarization for neutral particles in 2+1 dimensions
In 2+1 dimensions there exists a duality between a charged Dirac particle
coupled minimally to a background vector potential and a neutral one coupled
nonminimally to a background electromagnetic field strength. A constant uniform
background electric current induces in the vacuum of the neutral particle a
fermion current which is proportional to the background one. A background
electromagnetic plane wave induces no current in the vacuum. For constant but
nonuniform background electric charge, known results for charged particles can
be translated to give the induced fermion number. Some new examples with
infinite background electric charge are presented. The induced spin and total
angular momentum are also discussed.Comment: REVTeX, 7 pages, no figur
Non-Thermal Production of WIMPs and the Sub-Galactic Structure of the Universe
There is increasing evidence that conventional cold dark matter (CDM) models
lead to conflicts between observations and numerical simulations of dark matter
halos on sub-galactic scales. Spergel and Steinhardt showed that if the CDM is
strongly self-interacting, then the conflicts disappear. However, the
assumption of strong self-interaction would rule out the favored candidates for
CDM, namely weakly interacting massive particles (WIMPs), such as the
neutralino. In this paper we propose a mechanism of non-thermal production of
WIMPs and study its implications on the power spectrum. We find that the
non-vanishing velocity of the WIMPs suppresses the power spectrum on small
scales compared to what it obtained in the conventional CDM model. Our results
show that, in this context, WIMPs as candidates for dark matter can work well
both on large scales and on sub-galactic scales.Comment: 6 pages, 2 figures; typo corrected; to appear in PR
: An Excellent Candidate of Tetraquarks
We analyze various possible interpretations of the narrow state
which lies 100 MeV above threshold. This interesting state
decays mainly into instead of . If this relative branching
ratio is further confirmed by other experimental groups, we point out that the
identification of either as a state or more generally
as a state in the representation is probably
problematic. Instead, such an anomalous decay pattern strongly indicates
is a four quark state in the representation
with the quark content . We discuss its
partners in the same multiplet, and the similar four-quark states composed of a
bottom quark . Experimental searches of other members
especially those exotic ones are strongly called for
Recommended from our members
#Bigbirds never die: Understanding social dynamics of emergent hashtag
We examine the growth, survival, and context of 256 novel hashtags during the 2012 U.S. presidential debates. Our analysis reveals the trajectories of hashtag use fall into two distinct classes: âwinnersâ that emerge more quickly and are sustained for longer periods of time than other âalso-ransâ hashtags. We propose a âconversational vibrancyâ framework to capture dynamics of hashtags based on their topicality, interactivity, diversity, and prominence. Statistical analyses of the growth and persistence of hashtags reveal novel relationships between features of this framework and the relative success of hashtags. Specifically, retweets always contribute to faster hashtag adoption, replies extend the life of âwinnersâ while having no effect on âalso-rans.â This is the first study on the lifecycle of hashtag adoption and use in response to purely exogenous shocks. We draw on theories of uses and gratification, organizational ecology, and language evolution to discuss these findings and their implications for understanding social influence and collective action in social media more generally
Neutron scattering measurements of phonons in nickel at elevated temperatures
Measurements of elastic and inelastic neutron scatterings from elemental nickel were made at 10, 300, 575, 875, and 1275 K. The phonon densities of states (DOSs) were calculated from the inelastic scattering and were fit with Bornâvon KĂĄrmĂĄn models of the lattice dynamics. With ancillary data on thermal expansion and elastic moduli, we found a small, negative anharmonic contribution to the phonon entropy at high temperature. We used this to place bounds on the magnetic entropy of nickel. A significant broadening of the phonon DOS at elevated temperatures, another indication of anharmonicity, was also measured and quantified
Subleading corrections to parity-violating pion photoproduction
We compute the photon asymmetry BÎł for near threshold parity-violating (PV) pion photoproduction through subleading order. We show that subleading contributions involve a new combination of PV couplings not included in previous analyses of hadronic PV. We argue that existing constraints on the leading order contribution to BÎłâobtained from the PV Îł-decay of 18Fâsuggest that the impact of the subleading contributions may be more significant than expected from naturalness arguments
- âŠ