28,976 research outputs found
MUST-CNN: A Multilayer Shift-and-Stitch Deep Convolutional Architecture for Sequence-based Protein Structure Prediction
Predicting protein properties such as solvent accessibility and secondary
structure from its primary amino acid sequence is an important task in
bioinformatics. Recently, a few deep learning models have surpassed the
traditional window based multilayer perceptron. Taking inspiration from the
image classification domain we propose a deep convolutional neural network
architecture, MUST-CNN, to predict protein properties. This architecture uses a
novel multilayer shift-and-stitch (MUST) technique to generate fully dense
per-position predictions on protein sequences. Our model is significantly
simpler than the state-of-the-art, yet achieves better results. By combining
MUST and the efficient convolution operation, we can consider far more
parameters while retaining very fast prediction speeds. We beat the
state-of-the-art performance on two large protein property prediction datasets.Comment: 8 pages ; 3 figures ; deep learning based sequence-sequence
prediction. in AAAI 201
- …