291,809 research outputs found
Fluctuation-induced tunneling conduction through RuO nanowire contacts
A good understanding of the electronic conduction processes through
nanocontacts is a crucial step for the implementation of functional
nanoelectronic devices. We have studied the current-voltage (-)
characteristics of nanocontacts between single metallic RuO nanowires (NWs)
and contacting Au electrodes which were pre-patterned by simple
photolithography. Both the temperature behavior of contact resistance in the
low-bias voltage ohmic regime and the - curves in the high-bias voltage
non-ohmic regime have been investigated. We found that the electronic
conduction processes in the wide temperature interval 1--300 K can be well
described by the fluctuation-induced tunneling (FIT) conduction theory. Taken
together with our previous work (Lin {\it et al.}, Nanotechnology {\bf 19},
365201 (2008)) where the nanocontacts were fabricated by delicate electron-beam
lithography, our study demonstrates the general validity of the FIT model in
characterizing electronic nanocontacts.Comment: 6 pages, 5 figure
Exciton Hierarchies in Gapped Carbon Nanotubes
We present evidence that the strong electron-electron interactions in gapped
carbon nanotubes lead to finite hierarchies of excitons within a given nanotube
subband. We study these hierarchies by employing a field theoretic reduction of
the gapped carbon nanotube permitting electron-electron interactions to be
treated exactly. We analyze this reduction by employing a Wilsonian-like
numerical renormalization group. We are so able to determine the gap ratios of
the one-photon excitons as a function of the effective strength of
interactions. We also determine within the same subband the gaps of the
two-photon excitons, the single particle gaps, as well as a subset of the dark
excitons. The strong electron-electron interactions in addition lead to
strongly renormalized dispersion relations where the consequences of
spin-charge separation can be readily observed.Comment: 8 pages, 4 figure
Path Integral Solution by Sum Over Perturbation Series
A method for calculating the relativistic path integral solution via sum over
perturbation series is given. As an application the exact path integral
solution of the relativistic Aharonov-Bohm-Coulomb system is obtained by the
method. Different from the earlier treatment based on the space-time
transformation and infinite multiple-valued trasformation of
Kustaanheimo-Stiefel in order to perform path integral, the method developed in
this contribution involves only the explicit form of a simple Green's function
and an explicit path integral is avoided.Comment: 13 pages, ReVTeX, no figure
Three-Layer Magnetoconvection
It is believed that some stars have two or more convection zones in close proximity near to the stellar photosphere. These zones are separated by convectively stable regions that are relatively narrow. Due to the close proximity of these regions it is important to construct mathematical models to understand the transport and mixing of passive and dynamic quantities. One key quantity of interest is a magnetic field, a dynamic vector quantity, that can drastically alter the convectively driven flows, and have an important role in coupling the different layers. In this paper we present the first investigation into the effect of an imposed magnetic field in such a geometry. We focus our attention on the effect of field strength and show that, while there are some similarities with results for magnetic field evolution in a single layer, new and interesting phenomena are also present in a three layer system
- …
