125,140 research outputs found
A large-scale one-way quantum computer in an array of coupled cavities
We propose an efficient method to realize a large-scale one-way quantum
computer in a two-dimensional (2D) array of coupled cavities, based on coherent
displacements of an arbitrary state of cavity fields in a closed phase space.
Due to the nontrivial geometric phase shifts accumulating only between the
qubits in nearest-neighbor cavities, a large-scale 2D cluster state can be
created within a short time. We discuss the feasibility of our method for scale
solid-state quantum computationComment: 5 pages, 3 figure
Perturbation theorems for Hele-Shaw flows and their applications
In this work, we give a perturbation theorem for strong polynomial solutions
to the zero surface tension Hele-Shaw equation driven by injection or suction,
so called the Polubarinova-Galin equation. This theorem enables us to explore
properties of solutions with initial functions close to but are not polynomial.
Applications of this theorem are given in the suction or injection case. In the
former case, we show that if the initial domain is close to a disk, most of
fluid will be sucked before the strong solution blows up. In the later case, we
obtain precise large-time rescaling behaviors for large data to Hele-Shaw flows
in terms of invariant Richardson complex moments. This rescaling behavior
result generalizes a recent result regarding large-time rescaling behavior for
small data in terms of moments. As a byproduct of a theorem in this paper, a
short proof of existence and uniqueness of strong solutions to the
Polubarinova-Galin equation is given.Comment: 25 page
Effective hadronic Lagrangian for charm mesons
An effective hadronic Lagrangian including the charm mesons is introduced to
study their interactions in hadronic matter. Using coupling constants that are
determined either empirically or by the SU(4) symmetry, we have evaluated the
absorption cross sections of and the scattering cross sections of
and by and mesons.Comment: 5 pages, 4 eps figures, presented at Strangeness 2000, Berkeley. Uses
iopart.cl
Towards Long-endurance Flight: Design and Implementation of a Variable-pitch Gasoline-engine Quadrotor
Majority of today's fixed-pitch, electric-power quadrotors have short flight
endurance ( 1 hour) which greatly limits their applications. This paper
presents a design methodology for the construction of a long-endurance
quadrotor using variable-pitch rotors and a gasoline-engine. The methodology
consists of three aspects. Firstly, the rotor blades and gasoline engine are
selected as a pair, so that sufficient lift can be comfortably provided by the
engine. Secondly, drivetrain and airframe are designed. Major challenges
include airframe vibration minimization and power transmission from one engine
to four rotors while keeping alternate rotors contra-rotating. Lastly, a PD
controller is tuned to facilitate preliminary flight tests. The methodology has
been verified by the construction and successful flight of our gasoline
quadrotor prototype, which is designed to have a flight time of 2 to 3 hours
and a maximum take-off weight of 10 kg.Comment: 6 page
Remark on approximation in the calculation of the primordial spectrum generated during inflation
We re-examine approximations in the analytical calculation of the primordial
spectrum of cosmological perturbation produced during inflation. Taking two
inflation models (chaotic inflation and natural inflation) as examples, we
numerically verify the accuracy of these approximations.Comment: 10 pages, 6 figures, to appear in PR
Quantification of sub-resolution porosity in carbonate rocks by applying high-salinity contrast brine using X-ray microtomography differential imaging
Characterisation of the pore space in carbonate reservoirs and aquifers is of utmost importance in a number of applications such as enhanced oil recovery, geological carbon storage and contaminant transport. We present a new experimental methodology that uses high-salinity contrast brine and differential imaging acquired by X-ray tomography to non-invasively obtain three-dimensional spatially resolved information on porosity and connectivity of two rock samples, Portland and Estaillades limestones, including sub-resolution micro-porosity. We demonstrate that by injecting 30 wt% KI brine solution, a sufficiently high phase contrast can be achieved allowing accurate three-phase segmentation based on differential imaging. This results in spatially resolved maps of the solid grain phase, sub-resolution micro-pores within the grains, and macro-pores. The total porosity values from the three-phase segmentation for two carbonate rock samples are shown to be in good agreement with Helium porosity measurements. Furthermore, our flow-based method allows for an accurate estimate of pore connectivity and a distribution of porosity within the sub-resolution pores
Phonons in aluminum at high temperatures studied by inelastic neutron scattering
Inelastic neutron scattering measurements on aluminum metal were performed at temperatures of 10, 150, 300, 525, and 775 K using direct-geometry Fermi chopper spectrometers. The temperature dependent phonon density of states (DOS) was determined from the scattering, and was used to fit Born–von Kármán models of lattice dynamics. The shifts in the phonon frequencies with increasing temperature were largely explained by the softening of the longitudinal force constants out to third nearest neighbors. A significant broadening of the phonon spectra at high temperatures was also measured. The phonon DOS was used to determine the vibrational contributions to the entropy of aluminum as a function of temperature. All other contributions to the entropy of aluminum were calculated or assessed, and the total entropy was in excellent agreement with the NIST-JANAF compilation [M. W. Chase, J. Phys. Chem. Ref. Data Monogr. 9, 59 (1998)]. Anharmonic effects were attributed to phonon-phonon interactions. The quasiharmonic approximation was generally successful, but its weaknesses are discussed
On Using Active Learning and Self-Training when Mining Performance Discussions on Stack Overflow
Abundant data is the key to successful machine learning. However, supervised
learning requires annotated data that are often hard to obtain. In a
classification task with limited resources, Active Learning (AL) promises to
guide annotators to examples that bring the most value for a classifier. AL can
be successfully combined with self-training, i.e., extending a training set
with the unlabelled examples for which a classifier is the most certain. We
report our experiences on using AL in a systematic manner to train an SVM
classifier for Stack Overflow posts discussing performance of software
components. We show that the training examples deemed as the most valuable to
the classifier are also the most difficult for humans to annotate. Despite
carefully evolved annotation criteria, we report low inter-rater agreement, but
we also propose mitigation strategies. Finally, based on one annotator's work,
we show that self-training can improve the classification accuracy. We conclude
the paper by discussing implication for future text miners aspiring to use AL
and self-training.Comment: Preprint of paper accepted for the Proc. of the 21st International
Conference on Evaluation and Assessment in Software Engineering, 201
- …