526,719 research outputs found

    Dirac spin gapless semiconductors: Ideal platforms for massless and dissipationless spintronics and new (quantum) anomalous spin Hall effects

    Full text link
    It is proposed that the new generation of spintronics should be ideally massless and dissipationless for the realization of ultra-fast and ultra-low-power spintronic devices. We demonstrate that the spin-gapless materials with linear energy dispersion are unique materials that can realize these massless and dissipationless states. Furthermore, we propose four new types of spin Hall effects which consist of spin accumulation of equal numbers of electrons and holes having the same or opposite spin polarization at the sample edge in Hall effect measurements, but with vanishing Hall voltage. These new Hall effects can be classified as (quantum) anomalous spin Hall effects. The physics for massless and dissipationless spintronics and the new spin Hall effects are presented for spin-gapless semiconductors with either linear or parabolic dispersion. New possible candidates for Dirac-type or parabolic type spin-gapless semiconductors are demonstrated in ferromagnetic monolayers of simple oxides with either honeycomb or square lattices.Comment: 5 pages, 7 figue

    Overlapping fragments method for electronic structure calculation of large systems

    Full text link
    We present a method for the calculation of electronic structure of systems that contain tens of thousands of atoms. The method is based on the division of the system into mutually overlapping fragments and the representation of the single-particle Hamiltonian in the basis of eigenstates of these fragments. In practice, for the range of system size that we studied (up to tens of thousands of atoms), {the dominant part of the calculation scales} linearly with the size of the system when all the states within a fixed energy interval are required. The method is highly suitable for making good use of parallel computing architectures. We illustrate the method by applying it to diagonalize the single-particle Hamiltonian obtained using the density functional theory based charge patching method in the case of amorphous alkane and polythiophene polymers.Comment: 9 pages, 10 figures, the version accepted in J. Chem. Phy

    Quantum Transport Calculations Using Periodic Boundary Conditions

    Full text link
    An efficient new method is presented to calculate the quantum transports using periodic boundary conditions. This method allows the use of conventional ground state ab initio programs without big changes. The computational effort is only a few times of a normal ground state calculation, thus it makes accurate quantum transport calculations for large systems possible.Comment: 9 pages, 6 figure
    corecore