18 research outputs found

    Transcriptional peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α) regulates transformation of muscle fiber type in Schizothorax prenanti

    Get PDF
    Peroxisome proliferator-activated receptor γ coactivator (PGC)-1ɑ, a well-known member of PGC-1 transcriptional coactivator’s family, plays a key role in various metabolic pathways. Here, we investigated the role of PGC-1ɑ in the transformation of muscle fiber type in Schizothorax prenanti. The expression of PGC-1ɑ was induced in S. prenanti muscles following fasting. Following the induction of PGC-1ɑ, the expressions of mitochondrial-related enzyme cytochrome c oxidase (COX), citrate synthase (CS) and cytochrome c oxidase IV was also increased in white muscles, but the expression of carnitine palmitoyltransferase II (CPT II) has no change in this condition. Notably, when the levels of PGC-1ɑ was upregulated in the condition of fasting, muscle fibres type II showed the characteristics of muscle fibres type I, with expressed myosin heavy chain I (MyHC I) and myoglobin (Mb), and suppressed myosin heavy chain II (MyHC II) in response to fasting. Therefore, we can draw conclusion that PGC-1ɑ up-regulates slow fiber type formation during the transformation of muscle fiber type in S. prenanti.Keywords: PGC-1ɑ, muscle fiber type, transformation, Schizothorax prenanti, MyHC I, MyHC I

    Nano-Selenium Alleviates Cadmium-Induced Acute Hepatic Toxicity by Decreasing Oxidative Stress and Activating the Nrf2 Pathway in Male Kunming Mice

    Get PDF
    Cadmium (Cd) is known as a highly toxic heavy metal and has been reported to induce hepatotoxicity in animals. Nano-selenium (NSe) is an antioxidant that plays many biological roles such as oxidative stress alleviation. The purpose of this study is to explore the mechanism of action by which NSe inhibits Cd-induced hepatic toxicity and oxidative stress. Sixty eight-week-old male Kunming mice were randomly divided into four groups (15 mice per group). The control group and cadmium groups received distilled water, whereas the sodium-selenite group received 0.2 mg/kg SSe and the NSe group received 0.2 mg/kg NSe intragastrically for 2 weeks. On the last day, all the other groups were treated with Cd (126 mg/kg) except for the control group. The results obtained in this study showed that NSe alleviated Cd-induced hepatic pathological changes. Furthermore, NSe reduced the activities of ALT and AST as well as the content of MDA, while elevated the activities of T-AOC, T-SOD and GSH (P < 0.05). In addition, the NSe group significantly increased mRNA expressions of Nrf2 pathway related molecules (Nrf2, HO-1, NQO-1, GST, GSH-Px, CAT and SOD) compared to the Cd group (P < 0.05). In conclusion, NSe shows its potentiality to reduce Cd-induced liver injury by inhibiting oxidative stress and activating the Nrf2 pathway

    Acute and Subchronic Toxicity Studies of Aristolochic Acid A in Tianfu Broilers

    No full text
    Aristolochic acid (AA) is one of the components of some traditional Chinese medicines, which has high toxic potential in animals, leading to huge economic losses in the breeding industry. The purpose of this study is to evaluate the toxicology of AA on Tianfu broilers through acute and subchronic toxicity tests. The results showed that the median lethal dose of AA to Tianfu broilers was 14.52 mg/kg. After continuous intraperitoneal injection of AA solution (1.452 mg/kg) for 28 days, the swollen and necrotic renal tubular epithelial cells were histologically observed; in addition, blood urea nitrogen (BUN) and creatinine (Cre) were significantly increased, indicating AA could induce serious kidney lesions in broilers. Moreover, the ROS, the apoptosis rate and the depolarization rate of the mitochondrial membrane potential of broilers’ renal cells increased. The results of QRT-PCR showed that AA reduced the mRNA expressions of HO-1, NQO1, Raf-1 and Bcl-2, while the expressions of Bax and Caspase-3 increased, which show that AA aroused oxidative stress and promoted the apoptosis of renal cells. In conclusion, AA has been found to damage broilers’ kidneys by breaking the redox balance to form oxidative stress, along with promoting apoptosis of renal cells

    Effects of Dietary Ferulic Acid Supplementation on Hepatic Injuries in Tianfu Broilers Challenged with Lipopolysaccharide

    No full text
    Lipopolysaccharide (LPS) is an endotoxin that can cause an imbalance between the oxidation and antioxidant defense systems and then induces hepatic damages. Ferulic acid (FA) has multiple biological functions including antibacterial and antioxidant activities; however, the effect of FA on lipopolysaccharide-induced hepatic injury remains unknown. The purpose of this study was to investigate the mechanism of action of dietary Ferulic acid against Lipopolysaccharide-induced hepatic injuries in Tianfu broiler chickens. The results showed that supplementation of FA in daily feed increased body weight (BW) and decreased the feed conversion ratio (FCR) in LPS treatment broilers significantly (p < 0.05). Additionally, supplement of FA alleviated histological changes and apoptosis of hepatocytes in LPS treatment broilers. Supplement of FA significantly decreases the activities of ROS. Interestingly, the levels of antioxidant parameters including total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC), and glutathione (GSH) in LPS group were significantly increased by the FA supplementation (p < 0.05). Nevertheless, administration of LPS to broilers decreased the expressions of Nrf2, NQO1, SOD, GSH-Px, CAT and Bcl-2, whereas it increased the expressions of Bax and Caspase-3 (p < 0.05). Moreover, the expressions of Nrf2, NQO1, SOD, CAT, Bcl-2 were significantly upregulated and Caspase-3 were significantly downregulated in the FL group when compared to LPS group (p < 0.05). In conclusion, supplementation of FA in daily feed improves growth performance and alleviates LPS-induced oxidative stress, histopathologic changes, and apoptosis of hepatocytes in Tianfu broilers

    The Pathophysiological Changes and Clinical Effects of Tetramethylpyrazine in ICR Mice with Fluoride-Induced Hepatopathy

    No full text
    The excessive intake of fluoride, one of the trace elements required to maintain health, leads to liver injury. Tetramethylpyrazine (TMP) is a kind of traditional Chinese medicine monomer with a good antioxidant and hepatoprotective function. The aim of this study was to investigate the effect of TMP on liver injury induced by acute fluorosis. A total of 60 1-month-old male ICR mice were selected. All mice were randomly divided into five groups: a control (K) group, a model (F) group, a low-dose (LT) group, a medium-dose (MT) group, and a high-dose (HT) group. The control and model groups were given distilled water, while 40 mg/kg (LT), 80 mg/kg (MT), or 160 mg/kg (HT) of TMP was fed by gavage for two weeks, with a maximum gavage volume for the mice of 0.2 mL/10 g/d. Except for the control group, all groups were given fluoride (35 mg/kg) by an intraperitoneal injection on the last day of the experiment. The results of this study showed that, compared with the model group, TMP alleviated the pathological changes in the liver induced by the fluoride and improved the ultrastructure of liver cells; TMP significantly decreased the levels of ALT, AST, and MDA (p p p < 0.05). In conclusion, TMP can inhibit oxidative stress by activating the Nrf2 pathway and alleviate the liver injury induced by fluoride

    Effects of adding tea tree oil on growth performance, immune function, and intestinal function of broilers

    No full text
    ABSTRACT: The aim of this study was to investigate the effects of adding tea tree oil (TTO) in the basal diet on growth performance, immune function, and intestinal function in broilers. This study utilized 1,650 one-day-old broilers with good health and similar body weight. Subjects were randomized into 5 groups with 6 replicates each: the control group (CON, basal diet), positive control group (PCG, basal diet + 100 mg/kg oregano oil in diet), low-dose TTO group (TTO-L, 50 mg/kg TTO added in the basal diet), medium-dose TTO group (TTO-M, 100 mg/kg TTO added in the basal diet), and high-dose TTO group (TTO-H, 200 mg/kg TTO added in the basal diet). The whole test period lasted 28 d. The results showed that the broilers fed with TTO supplemented diet had significantly higher body weight and average daily gain (ADG) (P = 0.013), and had a lower feed conversion ratio (F/G) (P = 0.010) throughout the trial period. The index of thymus in TTO-M increased significantly compared to CON (P = 0.015) on d 28. On d 14 and 28, C3, IFN-γ, TNF-α, and IL-2 levels in TTO-L serum were significantly increased (P < 0.001); the 3 test groups supplemented with TTO had significantly higher titers of avian influenza H9 subtype in their serum (P < 0.05). Tea tree oil supplement in the diet also had a positive and significant effect on the intestinal morphology of broilers throughout the experiment (P < 0.05). These results indicate that TTO has the ability to promote broiler growth, regulate immunity, and improve intestinal morphology. The proposed dosage of adding 50 mg/kg in broiler basal diets provides a theoretical basis for its subsequent use in livestock feeds

    Effects of Dietary Ferulic Acid on Intestinal Health and Ileal Microbiota of Tianfu Broilers Challenged with Lipopolysaccharide

    No full text
    Lipopolysaccharide (LPS) has been considered the primary agent to establish animal models of inflammation, immunological stress, and organ injury. Previous studies have demonstrated that LPS impaired gastrointestinal development and disrupted intestinal microbial composition and metabolism. Ferulic acid (FA) isolated from multiple plants exhibits multiple biological activities. This study investigated whether FA ameliorated intestinal function and microflora in LPS-challenged Tianfu broilers. The results showed that LPS challenge impaired intestinal function, as evidenced by decreased antioxidant functions (p p p p CLDN and ZO-1 (p p < 0.05) in the ileal mucosa in LPS-challenged chickens. Moreover, FA supplementation rectified the ileal microflora disturbances in the LPS-challenged broilers. The results demonstrate that dietary FA supplementation decreased LPS-induced intestinal damage by enhancing antioxidant capacity and maintaining intestinal integrity. Furthermore, FA supplementation protects intestinal tight junctions (TJs), elevates secretory immunoglobulin A (sIgA) levels, and modulates ileal microflora composition in LPS-challenged broilers

    EGCG-Mediated Potential Inhibition of Biofilm Development and Quorum Sensing in Pseudomonas aeruginosa

    No full text
    Pseudomonas aeruginosa (P. aeruginosa), one of the dangerous multidrug resistance pathogens, orchestrates virulence factors production through quorum sensing (QS). Since the exploration of QS inhibitors, targeting virulence to circumvent bacterial pathogenesis without causing significant growth inhibition is a promising approach to treat P. aeruginosa infections. The present study has evaluated the anti-QS and anti-infective activity of epigallocatechin-3-gallate (EGCG), a bioactive ingredient of the traditional green tea, against P. aeruginosa. EGCG showed significant inhibitory effects on the development of biofilm, protease, elastase activity, swimming, and swarming motility, which was positively related to the production of C4-AHL. The expression of QS-related and QS-regulated virulence factors genes was also evaluated. Quantitative PCR analysis showed that EGCG significantly reduced the expression of las, rhl, and PQS genes and was highly correlated with the alterations of C4-AHL production. In-vivo experiments demonstrated that EGCG treatment reduced P. aeruginosa pathogenicity in Caenorhabditis elegans (C. elegans). EGCG increased the survival of C. elegans by 23.25%, 30.04%, and 36.35% in a dose-dependent manner. The findings of this study strongly suggest that EGCG could be a potential candidate for QS inhibition as an anti-virulence compound against bacterial infection

    Preparation of Galla Chinensis Oral Solution as well as Its Stability, Safety, and Antidiarrheal Activity Evaluation

    No full text
    Background of the Study. As a widely used traditional medicine, Galla Chinensis is rich in tannins. However, there are few detailed studies about pharmaceutical preparations of Galla Chinensis tannin extract (GTE). In the present experiments, for better application and to investigate the possibility that Galla Chinensis tannin extract can be used as an antidiarrheal drug, we prepared Galla Chinensis oral solution (GOS). Materials and Methods. GOS was prepared with GTE, and its physicochemical and microbiological stability was evaluated. The oral acute toxicity of GOS was calculated by the 50% lethal dose (LD50). The antidiarrheal activity was determined in a castor oil-induced diarrhea model in mice through diarrhea symptoms, fluid accumulation ratio, and percentage of distance moved by charcoal meal. Results. The tannin content of GTE was 47.75%. GOS could endure a high temperature without a significant decrease of tannin content. After storage for six months, the tannin content of GOS was still more than 90%. GOS was determined to be nontoxic. Meanwhile, GOS showed significant antidiarrheal activity in a castor oil-induced diarrhea model in mice (P<0.01). Conclusion. The results suggested that GOS is an effective and stable antidiarrheal drug that can be used to complement other therapies
    corecore