11,061 research outputs found

    A non-Gaussian continuous state space model for asset degradation

    Get PDF
    The degradation model plays an essential role in asset life prediction and condition based maintenance. Various degradation models have been proposed. Within these models, the state space model has the ability to combine degradation data and failure event data. The state space model is also an effective approach to deal with the multiple observations and missing data issues. Using the state space degradation model, the deterioration process of assets is presented by a system state process which can be revealed by a sequence of observations. Current research largely assumes that the underlying system development process is discrete in time or states. Although some models have been developed to consider continuous time and space, these state space models are based on the Wiener process with the Gaussian assumption. This paper proposes a Gamma-based state space degradation model in order to remove the Gaussian assumption. Both condition monitoring observations and failure events are considered in the model so as to improve the accuracy of asset life prediction. A simulation study is carried out to illustrate the application procedure of the proposed model

    Estimating medical costs from a transition model

    Full text link
    Nonparametric estimators of the mean total cost have been proposed in a variety of settings. In clinical trials it is generally impractical to follow up patients until all have responded, and therefore censoring of patient outcomes and total cost will occur in practice. We describe a general longitudinal framework in which costs emanate from two streams, during sojourn in health states and in transition from one health state to another. We consider estimation of net present value for expenditures incurred over a finite time horizon from medical cost data that might be incompletely ascertained in some patients. Because patient specific demographic and clinical characteristics would influence total cost, we use a regression model to incorporate covariates. We discuss similarities and differences between our net present value estimator and other widely used estimators of total medical costs. Our model can accommodate heteroscedasticity, skewness and censoring in cost data and provides a flexible approach to analyses of health care cost.Comment: Published in at http://dx.doi.org/10.1214/193940307000000266 the IMS Collections (http://www.imstat.org/publications/imscollections.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    Identification of the dimethylamine-trimethylamine complex in the gas phase

    Get PDF
    We have identified the dimethylamine-trimethylamine complex (DMA-TMA) at room temperature in the gas phase. The Fourier transform infrared (FTIR) spectrum of DMA-TMA in the NH-stretching fundamental region was obtained by spectral subtraction of spectra of each monomer. Explicitly correlated coupled cluster calculations were used to determine the minimum energy structure and interaction energy of DMA-TMA. Frequencies and intensities of NH-stretching transitions were also calculated at this level of theory with an anharmonic oscillator local mode model. The fundamental NH-stretching intensity in DMA-TMA is calculated to be approximately 700 times larger than that of the DMA monomer. The measured and calculated intensity is used to determine a room temperature equilibrium constant of DMA-TMA of 1.7 × 10⁻³ atm⁻¹ at 298 K

    Structural reliability prediction of a steel bridge element using dynamic object oriented Bayesian Network (DOOBN)

    Get PDF
    Different from conventional methods for structural reliability evaluation, such as, first/second-order reliability methods (FORM/SORM) or Monte Carlo simulation based on corresponding limit state functions, a novel approach based on dynamic objective oriented Bayesian network (DOOBN) for prediction of structural reliability of a steel bridge element has been proposed in this paper. The DOOBN approach can effectively model the deterioration processes of a steel bridge element and predict their structural reliability over time. This approach is also able to achieve Bayesian updating with observed information from measurements, monitoring and visual inspection. Moreover, the computational capacity embedded in the approach can be used to facilitate integrated management and maintenance optimization in a bridge system. A steel bridge girder is used to validate the proposed approach. The predicted results are compared with those evaluated by FORM method
    corecore