61 research outputs found

    Einfluss der Verarbeitungstechnologie und Werkstoffzusammensetzung auf die Struktur-Eigenschafts-Beziehungen von thermoplastischen Nanoverbundwerkstoffen

    Get PDF
    Die Einarbeitung von nanoskaligen FĂŒllstoffen zur Steigerung von polymeren Eigenschaftsprofilen ist sehr viel versprechend und stĂ¶ĂŸt daher heutzutage sowohl in der Forschung als auch in der Industrie auf großes Interesse. Bedingt durch ausgeprĂ€gte OberflĂ€chen und hohe AnziehungskrĂ€fte, liegen Nanopartikel allerdings nicht singulĂ€r sondern als PartikelanhĂ€ufungen, so genannten Agglomeraten oder Aggregaten, vor. Zur Erzielung der gewĂŒnschten Materialverbesserungen gilt es, diese aufzuspalten und homogen in der polymeren Matrix zu verteilen. Bei thermoplastischen Kunststoffen ist die gleichlĂ€ufige Doppelschneckenextrusion eines der gĂ€ngigsten Verfahren zur Einarbeitung von Additiven und FĂŒllstoffen. Aus diesem Grund war es Ziel dieser Arbeit, mittels dieses Verfahrens verbesserte Verbundwerkstoffe mit Polyamid 66- und Polyetheretherketon-Matrix, durch Einarbeitung von nanoskaligem Titandioxid (15 und 300 nm), zu generieren. In einem ersten Schritt wurden die verfahrenstechnischen Parameter, wie Drehzahl und Durchsatz, sowie die ProzessfĂŒhrung und damit deren Einfluss auf die Materialeigenschaften beleuchtet. Der spezifische Energieeintrag ist ausschlaggebend zur Deagglomeration der Nanopartikel. Dieser zeigte leichte AbhĂ€ngigkeiten von der Drehzahl und dem Durchsatz und verursachte bei der Einarbeitung der Partikel keine wesentlichen Unterschiede in der Aufspaltung der Partikel sowie gar keine in den resultierenden mechanischen Eigenschaften. Die ProzessfĂŒhrung wurde unterteilt in Mehrfach- und Einfachextrusion. Die Herstellung eines hochgefĂŒllten Masterbatches, dessen mehrfaches Extrudieren und anschließendes VerdĂŒnnen, fĂŒhrte zu einer sehr guten Deagglomeration und stark verbesserten Materialeigenschaften. Mittels Simulation des Extrusionsprozesses konnte festgestellt werden, dass das Vorhandensein von ungeschmolzenem Granulat in der Verfahrenszone zu einer Schmelze/Nanopartikel/ Feststoffreibung fĂŒhrt, die die Ursache fĂŒr eine sehr gute Aufspaltung der Partikel zu sein scheint. Durch Modifikation des Extrusionsprozesses erreichte die Einfachextrusion annĂ€hernd den Grad an Deagglomeration bei Mehrfachextrusion, wobei die Materialien bei letzterem Verfahren die besten Eigenschaftsprofile aufwiesen. In einem zweiten Schritt wurde ein Vergleich der EinflĂŒsse von unterschiedlichen PartikelgrĂ¶ĂŸen und –gehalten auf die polymeren Matrizes vollzogen. Die 15 nm Partikel zeigten signifikant bessere mechanische Ergebnisse auf als die 300 nm Partikel, und die Wirkungsweise des 15 nm Partikels auf Polyetheretherketon war stĂ€rker als auf Polyamid 66. Es konnten Steigerungen in Steifigkeit, Festigkeit und ZĂ€higkeit erzielt werden. Rasterelektronenmikroskopische Aufnahmen bestĂ€tigten diese Ergebnisse. Eine Berechnung der Plan-Selbstkosten von einem Kilogramm PEEK-Nanoverbundwerkstoff im Vergleich zu einem Kilogramm unverstĂ€rktem PEEK verdeutlichte, dass ein Material kreiert wurde, welches deutlich verbesserte Eigenschaften bei gleichem Preis aufweist. Zusammenfassend konnte in dieser Arbeit ein tieferes VerstĂ€ndnis des Extrusionsvorganges zur Herstellung von kostengĂŒnstigen und verbesserten Thermoplasten durch das Einbringen von Nanopartikeln gewonnen werden

    Oncogenic STRAP functions as a novel negative regulator of E-cadherin and p21<sup>Cip1</sup> by modulating the transcription factor Sp1

    No full text
    <div><p></p><p>We have previously reported the identification of a novel WD-domain protein, STRAP that plays a role in maintenance of mesenchymal morphology by regulating E-cadherin and that enhances tumorigenicity partly by downregulating CDK inhibitor p21<sup>Cip1</sup>. However, the functional mechanism of regulation of E-cadherin and p21<sup>Cip1</sup> by STRAP is unknown. Here, we have employed STRAP knock out and knockdown cell models (mouse embryonic fibroblast, human cancer cell lines) to show how STRAP downregulates E-cadherin and p21<sup>Cip1</sup> by abrogating the binding of Sp1 to its consensus binding sites. Moreover, ChIP assays suggest that STRAP recruits HDAC1 to Sp1 binding sites in p21<sup>Cip1</sup> promoter. Interestingly, loss of STRAP can stabilize Sp1 by repressing its ubiquitination in G1 phase, resulting in an enhanced expression of p21<sup>Cip1</sup> by >4.5-fold and cell cycle arrest. Using Bioinformatics and Microarray analyses, we have observed that 87% mouse genes downregulated by STRAP have conserved Sp1 binding sites. In NSCLC, the expression levels of STRAP inversely correlated with that of Sp1 (60%). These results suggest a novel mechanism of regulation of E-cadherin and p21<sup>Cip1</sup> by STRAP by modulating Sp1-dependent transcription, and higher expression of STRAP in lung cancer may contribute to downregulation of E-cadherin and p21<sup>Cip1</sup> and to tumor progression.</p></div

    Emergence of Zeolite Analogs and other Microporous Crystals in an Atomic Lattice Model of Silica and Related Materials

    No full text
    The potential of tailored nanopores to transform technologies such as drug delivery, biofuel production, and optical-electronic devices depends on fundamental knowledge of the self-assembly of ordered nanoporous solids. Atomic-level geometries of critical nuclei that lead to such solids have remained hidden in the nanoscale blind spot between local (<0.5 nm) and collective (>5 nm) probes of structure. Heroic efforts at molecular simulation of nanopore formation have provided massive libraries of hypothetical structures;− however, to date no statistical simulation has generated a crystallization pathway from random initial condition to ordered nanoporous solid, until now. In this work, we show that a recently developed atomic lattice model of silica and related materials can form ordered nanoporous solids with a rich variety of structures including known chalcogenides, zeolite analogs, and layered materials. We find that whereas canonical Monte Carlo simulations of the model consistently produce the amorphous solids studied in our previous work, parallel tempering Monte Carlo gives rise to ordered nanoporous solids. The utility of parallel tempering highlights the existence of barriers between amorphous and crystalline phases of our model. Moreover, the self-assembly or nanoporous crystalline phases in the model open the door to detailed understanding of nanopore nucleation

    Monosaccharide-Water Complexes: Vibrational Spectroscopy and Anharmonic Potentials

    No full text
    Ab initio vibrational self-consistent field (VSCF) calculations are used to predict the vibrational spectra of an extended series of monosaccharide·D<sub>2</sub>O complexes, including glucose, galactose, mannose, xylose, and fucose in their α and ÎČ anomeric forms, and compared with recently published experimental data for their (phenyl-tagged) complexes. Anharmonic VSCF-PT2 frequencies are calculated directly, using ab initio hybrid HF/MP2 potentials, to assess their accuracy in reproducing the vibrational anharmonicities and provide a more rigorous basis for vibrational and structural assignments. The average discrepancies between the calculated and experimental frequencies are ∌1.0–1.5%, and the first-principles spectroscopic calculations, free of any empirical scaling, yield results of high accuracy. They encourage confidence in their future application to the assignment of other carbohydrate systems, both free and complexed, and an improved understanding of their intra- and intermolecular carbohydrate interactions

    Your Remnant Tells Secret: Residual Resolution in DDoS Protection Services

    No full text
    <p>Used to identify the adoption of DDoS Protection Services offered by CDN platforms</p> <p>Including AS numbers, CNAME strings, and IP ranges collected from each CDN vendor studied in the paper</p

    Effects of Polyacrylonitrile/MoS<sub>2</sub> Composite Nanofibers on the Growth Behavior of Bone Marrow Mesenchymal Stem Cells

    No full text
    In recent years, molybdenum disulfide (MoS<sub>2</sub>) as a typical class of two-dimensional (2D) materials has attracted wide attention because of its various fascinating properties. In this study, we fabricated MoS<sub>2</sub> composite nanofibers by electrospinning technology combined with a doping method. The as-prepared MoS<sub>2</sub> composite nanofibers exhibited excellent biocompatibility. In addition, the detailed investigation about the response of MoS<sub>2</sub> composite nanofibers on bone marrow mesenchymal stem cells (BMSCs) indicated that the obtained MoS<sub>2</sub> composite nanofibers could promote BMSC growth behavior, improve BMSC contact with each other, maintain cellular activity, and also provide positive promotion to regulate cellular proliferation. Moreover, the alkaline phosphatase expression significantly increased with increasing MoS<sub>2</sub> concentration. Compared with the excellent biocompatibility and natural extracellular-matrix-like structure, we believe that the MoS<sub>2</sub> composite nanofibers could provide new insight for the preparation of well-defined MoS<sub>2</sub> nanostructure materials and will have promising potential in biomedical applications, such as tissue engineering, photothermal therapy, etc

    Fabrication, Characterization, and Biocompatibility of Polymer Cored Reduced Graphene Oxide Nanofibers

    No full text
    Graphene nanofibers have shown a promising potential across a wide spectrum of areas, including biology, energy, and the environment. However, fabrication of graphene nanofibers remains a challenging issue due to the broad size distribution and extremely poor solubility of graphene. Herein, we report a facile yet efficient approach for fabricating a novel class of polymer core-reduced graphene oxide shell nanofiber mat (RGO–CSNFM) by direct heat-driven self-assembly of graphene oxide sheets onto the surface of electrospun polymeric nanofibers without any requirement of surface treatment. Thus-prepared RGO–CSNFM demonstrated excellent mechanical, electrical, and biocompatible properties. RGO–CSNFM also promoted a higher cell anchorage and proliferation of human bone marrow mesenchymal stem cells (hMSCs) compared to the free-standing RGO film without the nanoscale fibrous structure. Further, cell viability of hMSCs was comparable to that on the tissue culture plates (TCPs) with a distinctive healthy morphology, indicating that the nanoscale fibrous architecture plays a critically constructive role in supporting cellular activities. In addition, the RGO–CSNFM exhibited excellent electrical conductivity, making them an ideal candidate for conductive cell culture, biosensing, and tissue engineering applications. These findings could provide a new benchmark for preparing well-defined graphene-based nanomaterial configurations and interfaces for biomedical applications
    • 

    corecore