13 research outputs found

    Intestinal Fibroblast/Myofibroblast TRP Channels in Inflammatory Bowel Disease

    Get PDF
    Inflammatory bowel disease (IBD) is characterized by the repeated cycles of inflammation and healing of the gut, which ultimately progress into intestinal fibrosis. Colonic fibroblast/myofibroblast’s functions such as transformation, proliferation, invasion, migration, stress fiber formation, collagen synthesis, and cytokine/chemokine secretion are well estimated. However, the detailed mechanism can rarely be found so far. Thus, we focused on transient receptor potential (TRP) protein super family activated by various physical/chemical stimulations based on the above-described recognitions and also conducted the following examinations for the potential roles in Ca2+ signal transduction in fibroblast/myofibroblasts cells, which play an important role in intestinal inflammation and tissue remodeling. This chapter not only facilitates the understanding about the new role of intestinal fibroblast/myofibroblasts TRP channel for regulating inflammation, fibrotic processes but also suggests a novel molecular target of IBD treatment in future

    Pro-Arrhythmic Signaling of Thyroid Hormones and Its Relevance in Subclinical Hyperthyroidism

    No full text
    A perennial task is to prevent the occurrence and/or recurrence of most frequent or life-threatening cardiac arrhythmias such as atrial fibrillation (AF) and ventricular fibrillation (VF). VF may be lethal in cases without an implantable cardioverter defibrillator or with failure of this device. Incidences of AF, even the asymptomatic ones, jeopardize the patient’s life due to its complication, notably the high risk of embolic stroke. Therefore, there has been a growing interest in subclinical AF screening and searching for novel electrophysiological and molecular markers. Considering the worldwide increase in cases of thyroid dysfunction and diseases, including thyroid carcinoma, we aimed to explore the implication of thyroid hormones in pro-arrhythmic signaling in the pathophysiological setting. The present review provides updated information about the impact of altered thyroid status on both the occurrence and recurrence of cardiac arrhythmias, predominantly AF. Moreover, it emphasizes the importance of both thyroid status monitoring and AF screening in the general population, as well as in patients with thyroid dysfunction and malignancies. Real-world data on early AF identification in relation to thyroid function are scarce. Even though symptomatic AF is rare in patients with thyroid malignancies, who are under thyroid suppressive therapy, clinicians should be aware of potential interaction with asymptomatic AF. It may prevent adverse consequences and improve the quality of life. This issue may be challenging for an updated registry of AF in clinical practice. Thyroid hormones should be considered a biomarker for cardiac arrhythmias screening and their tailored management because of their multifaceted cellular actions

    Does Myocardial Atrophy Represent Anti-Arrhythmic Phenotype?

    No full text
    This review focuses on cardiac atrophy resulting from mechanical or metabolic unloading due to various conditions, describing some mechanisms and discussing possible strategies or interventions to prevent, attenuate or reverse myocardial atrophy. An improved awareness of these conditions and an increased focus on the identification of mechanisms and therapeutic targets may facilitate the development of the effective treatment or reversion for cardiac atrophy. It appears that a decrement in the left ventricular mass itself may be the central component in cardiac deconditioning, which avoids the occurrence of life-threatening arrhythmias. The depressed myocardial contractility of atrophied myocardium along with the upregulation of electrical coupling protein, connexin43, the maintenance of its topology, and enhanced PKCε signalling may be involved in the anti-arrhythmic phenotype. Meanwhile, persistent myocardial atrophy accompanied by oxidative stress and inflammation, as well as extracellular matrix fibrosis, may lead to severe cardiac dysfunction, and heart failure. Data in the literature suggest that the prevention of heart failure via the attenuation or reversion of myocardial atrophy is possible, although this requires further research

    Long-Term Tracking of the Effects of Colostrum-Derived <i>Lacticaseibacillus rhamnosus</i> Probio-M9 on Gut Microbiota in Mice with Colitis-Associated Tumorigenesis

    No full text
    Intestinal bacteria play important roles in the progression of colitis-associated carcinogenesis. Colostrum-derived Lacticaseibacillus rhamnosus Probio-M9 (Probio-M9) has shown a protective effect in a colitis-associated cancer (CAC) model, but detailed metagenomic analysis had not been performed. Here, we investigated the preventive effects of the probiotic Probio-M9 on CAC-model mice, tracking the microbiota. Feces were obtained at four time points for evaluation of gut microbiota. The effect of Probio-M9 on tight junction protein expression was evaluated in co-cultured Caco-2 cells. Probio-M9 treatment decreased the number of tumors as well as stool consistency score, spleen weight, inflammatory score, and macrophage expression in the CAC model. Probio-M9 accelerated the recovery of the structure, composition, and function of the intestinal microbiota destroyed by azoxymethane (AOM)/dextran sulfate sodium (DSS) by regulating key bacteria (including Lactobacillus murinus, Muribaculaceae bacterium DSM 103720, Muribaculum intestinale, and Lachnospiraceae bacterium A4) and pathways from immediately after administration until the end of the experiment. Probio-M9 co-culture protected against lipopolysaccharide-induced impairment of tight junctions in Caco-2 cells. This study provides valuable insight into the role of Probio-M9 in correcting gut microbiota defects associated with inflammatory bowel disease carcinogenesis and may have clinical application in the treatment of inflammatory carcinogenesis

    An Arrhythmic Mutation E7K Facilitates TRPM4 Channel Activation via Enhanced PIP2 Interaction

    No full text
    A Ca2+-activated monovalent cation-selective TRPM4 channel is abundantly expressed in the heart. Recently, a single gain-of-function mutation identified in the distal N-terminus of the human TRPM4 channel (Glu5 to Lys5; E7K) was found to be arrhythmogenic because of enhanced cell membrane expression. In this study, we conducted detailed analyses of this mutant channel from more functional aspects, in comparison with its wild type (WT). In an expression system, intracellular application of a short soluble PIP2 (diC8PIP2) restored the single-channel activities of both WT and E7K, which had quickly faded after membrane excision. The potency (Kd) of diC8PIP2 for this recovery was stronger in E7K than its WT (1.44 vs. 2.40 μM). FRET-based PIP2 measurements combined with the Danio rerio voltage-sensing phosphatase (DrVSP) and patch clamping revealed that lowering the endogenous PIP2 level by DrVSP activation reduced the TRPM4 channel activity. This effect was less prominent in E7K than its WT (apparent Kd values estimated from DrVSP-mediated PIP2 depletion: 0.97 and 1.06 μM, respectively), being associated with the differential PIP2-mediated modulation of voltage dependence. Moreover, intracellular perfusion of short N-terminal polypeptides containing either the ‘WT’ or ‘E7K’ sequences respectively attenuated the TRPM4 channel activation at whole-cell and single-channel levels, but in both configurations, the E7K polypeptide exerted greater inhibitory effects. These results collectively suggest that N-terminal interaction with endogenous PIP2 is essential for the TRPM4 channel to function, the extent of which may be abnormally strengthened by the E7K mutation through modulating voltage-dependent activation. The altered PIP2 interaction may account for the arrhythmogenic potential of this mutation

    Connexin43, A Promising Target to Reduce Cardiac Arrhythmia Burden in Pulmonary Arterial Hypertension

    No full text
    While essential hypertension (HTN) is very prevalent, pulmonary arterial hypertension (PAH) is very rare in the general population. However, due to progressive heart failure, prognoses and survival rates are much worse in PAH. Patients with PAH are at a higher risk of developing supraventricular arrhythmias and malignant ventricular arrhythmias. The latter underlie sudden cardiac death regardless of the mechanical cardiac dysfunction. Systemic chronic inflammation and oxidative stress are causal factors that increase the risk of the occurrence of cardiac arrhythmias in hypertension. These stressful factors contribute to endothelial dysfunction and arterial pressure overload, resulting in the development of cardiac pro-arrhythmic conditions, including myocardial structural, ion channel and connexin43 (Cx43) channel remodeling and their dysfunction. Myocardial fibrosis appears to be a crucial proarrhythmic substrate linked with myocardial electrical instability due to the downregulation and abnormal topology of electrical coupling protein Cx43. Furthermore, these conditions promote ventricular mechanical dysfunction and heart failure. The treatment algorithm in HTN is superior to PAH, likely due to the paucity of comprehensive pathomechanisms and causal factors for a multitargeted approach in PAH. The intention of this review is to provide information regarding the role of Cx43 in the development of cardiac arrhythmias in hypertensive heart disease. Furthermore, information on the progress of therapy in terms of its cardioprotective and potentially antiarrhythmic effects is included. Specifically, the benefits of sodium glucose co-transporter inhibitors (SGLT2i), as well as sotatercept, pirfenidone, ranolazine, nintedanib, mirabegron and melatonin are discussed. Discovering novel therapeutic and antiarrhythmic strategies may be challenging for further research. Undoubtedly, such research should include protection of the heart from inflammation and oxidative stress, as these are primary pro-arrhythmic factors that jeopardize cardiac Cx43 homeostasis, the integrity of intercalated disk and extracellular matrix, and, thereby, heart function

    Lactulose Modulates the Structure of Gut Microbiota and Alleviates Colitis-Associated Tumorigenesis

    No full text
    Lactulose, a galactose-fructose disaccharide, is made from the milk sugar lactose by heating or isomerization processes. Lactulose is proposed to modulate gut microbiota and thus expected to be beneficial in treating inflammatory bowel disease. In the present study, we investigated the therapeutic effect of lactulose on gastrointestinal inflammation and inflammation-related tumorigenesis in a mouse model of colorectal cancer as well as its effect on gut microbiota composition. Azoxymethane (AOM)/dextran sulfate sodium (DSS) model was used in this study. Lactulose treatment was performed by feeding 2% lactulose for 14 weeks. Stool samples collected at 4 time points were used for metagenomic analysis of the microbiota. Pathological analysis was performed 21 weeks after AOM injection. AOM/DSS increased the macrophage counts, inflammatory cytokine expression, colorectal tumorigenesis, and imbalance in gut microbiota composition, as evidenced by increased pathogen abundance (e.g., Escherichia and Clostridium). Lactulose significantly inhibited the inflammatory events, and ameliorated inflammation and tumorigenesis. The composition of the intestinal microbiota was also restored upon lactulose treatment, and lactulose reduced pathogen abundance and increased the abundance of Muribaculum and Lachnospiraceae. Meanwhile, the pathways related to Crohn’s disease were downregulated after lactulose treatment. Our findings suggest that lactulose restores the structure and composition of the intestinal microbiota, mitigates inflammation, and suppresses inflammatory tumorigenesis

    Activation of Myofibroblast TRPA1 by Steroids and Pirfenidone Ameliorates Fibrosis in Experimental Crohn's Disease

    No full text
    The transient receptor potential ankyrin 1 (TRPA1) channel is highly expressed in the intestinal lamina propria, but its contribution to gut physiology/pathophysiology is unclear. Here, we evaluated the function of myofibroblast TRPA1 channels in intestinal remodeling. Methods: An intestinal myofibroblast cell line (InMyoFibs) was stimulated by transforming growth factor-β1 to induce in vitro fibrosis. Trpa1 knockout mice were generated using the Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system. A murine chronic colitis model was established by weekly intrarectal trinitrobenzene sulfonic acid (TNBS) administration. Samples from the intestines of Crohn’s disease (CD) patients were used for pathologic staining and quantitative analyses. Results: In InMyoFibs, TRPA1 showed the highest expression among TRP family members. In TNBS chronic colitis model mice, the extents of inflammation and fibrotic changes were more prominent in TRPA1-/- knockout than in wild-type mice. One-week enema administration of prednisolone suppressed fibrotic lesions in wild-type mice, but not in TRPA1 knockout mice. Steroids and pirfenidone induced Ca2+ influx in InMyoFibs, which was antagonized by the selective TRPA1 channel blocker HC-030031. Steroids and pirfenidone counteracted transforming growth factor-β1–induced expression of heat shock protein 47, type 1 collagen, and α-smooth muscle actin, and reduced Smad-2 phosphorylation and myocardin expression in InMyoFibs. In stenotic intestinal regions of CD patients, TRPA1 expression was increased significantly. TRPA1/heat shock protein 47 double-positive cells accumulated in the stenotic intestinal regions of both CD patients and TNBS-treated mice. Conclusions: TRPA1, in addition to its anti-inflammatory actions, may protect against intestinal fibrosis, thus being a novel therapeutic target for highly incurable inflammatory/fibrotic disorders
    corecore