958 research outputs found
Reactive interface formation and Co-induced (√7×√7 ) superstructure on a GaN(0001) pseudo- (1×1 ) substrate surface
Deposition of Co on GaN(0001) pseudo- (1×1) surface at room temperature by molecular-beam epitaxy is studied by low-energy electron diffraction, scanning-tunneling microscopy and first-principles total energy calculations. Reactive interface formation where the deposited Co reacts with Ga on GaN substrate forming CoGax (x∼2) compound or alloy can be inferred from surface morphology evolution and mass consideration. At an intermediate coverage about 0.4 monolayers, a specific (√7×√7) surface structural phase develops, as observed by both low-energy electron diffraction and scanning tunneling microscopy studies. First-principles total energy calculations suggest that the (√7×√7) structure is induced by Co-trimers located slightly below the topmost Ga adlayer of the substrate. © 2010 The American Physical Society.published_or_final_versio
Electrically-controllable RKKY interaction in semiconductor quantum wires
We demonstrate in theory that it is possible to all-electrically manipulate
the RKKY interaction in a quasi-one-dimensional electron gas embedded in a
semiconductor heterostructure, in the presence of Rashba and Dresselhaus
spin-orbit interaction. In an undoped semiconductor quantum wire where
intermediate excitations are gapped, the interaction becomes the short-ranged
Bloembergen-Rowland super-exchange interaction. Owing to the interplay of
different types of spin-orbit interaction, the interaction can be controlled to
realize various spin models, e.g., isotropic and anisotropic Heisenberg-like
models, Ising-like models with additional Dzyaloshinsky-Moriya terms, by tuning
the external electric field and designing the crystallographic directions. Such
controllable interaction forms a basis for quantum computing with localized
spins and quantum matters in spin lattices.Comment: 5 pages, 1 figur
Is the speed of chronic compression an important factor for chronic spinal cord injury rat model?
postprin
New zebrafish models of neurodegeneration
In modern biomedicine, the increasing need to develop experimental models to further our understanding of disease conditions and delineate innovative treatments has found in the zebrafish (Danio rerio) an experimental model, and indeed a valuable asset, to close the gap between in vitro and in vivo assays. Translation of ideas at a faster pace is vital in the field of neurodegeneration, with the attempt to slow or prevent the dramatic impact on the society's welfare being an essential priority. Our research group has pioneered the use of zebrafish to contribute to the quest for faster and improved understanding and treatment of neurodegeneration in concert with, and inspired by, many others who have primed the study of the zebrafish to understand and search for a cure for disorders of the nervous system. Aware of the many advantages this vertebrate model holds, here, we present an update on the recent zebrafish models available to study neurodegeneration with the goal of stimulating further interest and increasing the number of diseases and applications for which they can be exploited. We shall do so by citing and commenting on recent breakthroughs made possible via zebrafish, highlighting their benefits for the testing of therapeutics and dissecting of disease mechanisms
Estimating Dengue Transmission Intensity from Case-Notification Data from Multiple Countries
Despite being the most widely distributed mosquito-borne viral infection, estimates of dengue transmission intensity and associated burden remain ambiguous. With advances in the development of novel control measures, obtaining robust estimates of average dengue transmission intensity is key for assessing the burden of disease and the likely impact of interventions.We estimated the force of infection (λ) and corresponding basic reproduction numbers (R0) by fitting catalytic models to age-stratified incidence data identified from the literature. We compared estimates derived from incidence and seroprevalence data and assessed the level of under-reporting of dengue disease. In addition, we estimated the relative contribution of primary to quaternary infections to the observed burden of dengue disease incidence. The majority of R0 estimates ranged from one to five and the force of infection estimates from incidence data were consistent with those previously estimated from seroprevalence data. The baseline reporting rate (or the probability of detecting a secondary infection) was generally low (<25%) and varied within and between countries.As expected, estimates varied widely across and within countries, highlighting the spatio-temporally heterogeneous nature of dengue transmission. Although seroprevalence data provide the maximum information, the incidence models presented in this paper provide a method for estimating dengue transmission intensity from age-stratified incidence data, which will be an important consideration in areas where seroprevalence data are not available
Recommended from our members
Electrostatic force driven helium insertion into ammonia and water crystals under pressure
AbstractHelium, ammonia and ice are among the major components of giant gas planets, and predictions of their chemical structures are therefore crucial in predicting planetary dynamics. Here we demonstrate a strong driving force originating from the alternation of the electrostatic interactions for helium to react with crystals of polar molecules such as ammonia and ice. We show that ammonia and helium can form thermodynamically stable compounds above 45 GPa, while ice and helium can form thermodynamically stable compounds above 300 GPa. The changes in the electrostatic interactions provide the driving force for helium insertion under high pressure, but the mechanism is very different to those that occur in ammonia and ice. This work extends the reactivity of helium into new types of compounds and demonstrates the richness of the chemistry of this most stable element in the periodic table.</jats:p
Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay
published_or_final_versio
Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment
published_or_final_versio
- …
