72,054 research outputs found

    α\alpha-Particle Spectrum in the Reaction p+11^{11}B→α+8Be∗→3α\to \alpha + ^8Be^*\to 3\alpha

    Full text link
    Using a simple phenomenological parametrization of the reaction amplitude we calculated α\alpha-particle spectrum in the reaction p+11^{11}B→α+8Be∗→3α\to \alpha + ^8Be^*\to 3\alpha at the resonance proton energy 675 KeV. The parametrization includes Breit-Wigner factor with an energy dependent width for intermediate 8Be∗^8Be^* state and the Coulomb and the centrifugal factors in α\alpha-particle emission vertexes. The shape of the spectrum consists of a well defined peak corresponding to emission of the primary α\alpha and a flat shoulder going down to very low energy. We found that below 1.5 MeV there are 17.5% of α\alpha's and below 1 MeV there are 11% of them.Comment: 6 pages, 3 figure

    Block-block entanglement and quantum phase transitions in one-dimensional extended Hubbard model

    Full text link
    In this paper, we study block-block entanglement in the ground state of one-dimensional extended Hubbard model. Our results show that the phase diagram derived from the block-block entanglement manifests richer structure than that of the local (single site) entanglement because it comprises nonlocal correlation. Besides phases characterized by the charge-density-wave, the spin-density-wave, and phase-separation, which can be sketched out by the local entanglement, singlet superconductivity phase could be identified on the contour map of the block-block entanglement. Scaling analysis shows that log2(l){\rm log}_2(l) behavior of the block-block entanglement may exist in both non-critical and the critical regions, while some local extremum are induced by the finite-size effect. We also study the block-block entanglement defined in the momentum space and discuss its relation to the phase transition from singlet superconducting state to the charge-density-wave state.Comment: 8 pages, 9 figure

    Tau Neutrino Astronomy in GeV Energies

    Full text link
    We point out the opportunity of the tau neutrino astronomy for the neutrino energy E ranging between 10 GeV and 10^3 GeV. In this energy range, the intrinsic tau neutrino production is suppressed relative to the intrinsic muon neutrino production. Any sizable tau neutrino flux may thus arise because of the \nu_{\mu}\to \nu_{\tau} neutrino oscillations only. It is demonstrated that, in the presence of the neutrino oscillations, consideration of the neutrino flavor dependence in the background atmospheric neutrino flux leads to the drastically different prospects between the observation of the astrophysical muon neutrinos and that of the astrophysical tau neutrinos. Taking the galactic-plane neutrino flux as the targeted astrophysical source, we have found that the galactic-plane tau neutrino flux dominates over the atmospheric tau neutrino flux for E > 10 GeV. Hence, the galactic-plane can at least in principle be seen through the tau neutrinos with energies just greater than 10 GeV. In a sharp contrast, the galactic-plane muon neutrino flux is overwhelmed by its atmospheric background until E > 10^6 GeV.Comment: major revision of text and two new figures, to appear in PR

    Muon Pair Production by Electron-Photon Scatterings

    Get PDF
    The cross section for muon pair productions by electrons scattering over photons, σMPP\sigma_{MPP}, is calculated analytically in the leading order. It is pointed out that for the center-of-mass energy range, s≥5mμ2s \geq 5 m^{2}_{\mu}, the cross section for σMPP\sigma_{MPP} is less than 1μ1 \mu b. The differential energy spectrum for either of the resulting muons is given for the purpose of high-energy neutrino astronomy. An implication of our result for a recent suggestion concerning the high-energy cosmic neutrino generation through this muon pair is discussed.Comment: a comment added, to appear in Phys. Rev. D, Rapid Communicatio

    Entanglement and quantum phase transition in the extended Hubbard model

    Full text link
    We study quantum entanglement in one-dimensional correlated fermionic system. Our results show, for the first time, that entanglement can be used to identify quantum phase transitions in fermionic systems.Comment: 5 pages, 4 figure

    Production and Decay of the Ge73-m Metastable State in a Low-Background Germanium Detector

    Get PDF
    The ≥73m\ge73m metastable states decay with a very characteristic signature which allow them to be tagged event-by-event. Studies were performed using data taken with a high-purity germanium detector in a low-background laboratory near a nuclear power reactor core where \nuebar-flux was 6.4×1012 cm−2s−1\rm{6.4 \times 10^{12} ~ cm^{-2} s^{-1}}. The measured average and equilibrium production rates of ≥73m\ge73m were (8.7±0.4)\rm{(8.7 \pm 0.4)} and (6.7±0.3) kg−1day−1\rm{(6.7 \pm 0.3) ~ kg^{-1} day^{-1}}, respectively. The production channels were studied and identified. By studying the difference in the production of ≥73m\ge73m between the reactor ON and OFF spectra, the limiting sensitivities at the range of ∼10−42−10−43 cm2\rm{\sim 10^{-42} - 10^{-43} ~ cm^2} for the cross-sections of neutrino-induced nuclear transitions were derived. The dominant background are due to β\beta-decays of cosmic-ray induced 73^{73}Ga. The prospects of enhancing the sensitivities at underground locations are discussed.Comment: 16 pages, 10 figure

    Configuration-Space Location of the Entanglement between Two Subsystems

    Full text link
    In this paper we address the question: where in configuration space is the entanglement between two particles located? We present a thought-experiment, equally applicable to discrete or continuous-variable systems, in which one or both parties makes a preliminary measurement of the state with only enough resolution to determine whether or not the particle resides in a chosen region, before attempting to make use of the entanglement. We argue that this provides an operational answer to the question of how much entanglement was originally located within the chosen region. We illustrate the approach in a spin system, and also in a pair of coupled harmonic oscillators. Our approach is particularly simple to implement for pure states, since in this case the sub-ensemble in which the system is definitely located in the restricted region after the measurement is also pure, and hence its entanglement can be simply characterised by the entropy of the reduced density operators. For our spin example we present results showing how the entanglement varies as a function of the parameters of the initial state; for the continuous case, we find also how it depends on the location and size of the chosen regions. Hence we show that the distribution of entanglement is very different from the distribution of the classical correlations.Comment: RevTex, 12 pages, 9 figures (28 files). Modifications in response to journal referee
    • …
    corecore