51,795 research outputs found
Wavelet Galerkin method for fractional elliptic differential equations
Under the guidance of the general theory developed for classical partial
differential equations (PDEs), we investigate the Riesz bases of wavelets in
the spaces where fractional PDEs usually work, and their applications in
numerically solving fractional elliptic differential equations (FEDEs). The
technique issues are solved and the detailed algorithm descriptions are
provided. Compared with the ordinary Galerkin methods, the wavelet Galerkin
method we propose for FEDEs has the striking benefit of efficiency, since the
condition numbers of the corresponding stiffness matrixes are small and
uniformly bounded; and the Toeplitz structure of the matrix still can be used
to reduce cost. Numerical results and comparison with the ordinary Galerkin
methods are presented to demonstrate the advantages of the wavelet Galerkin
method we provide.Comment: 20 pages, 0 figure
Concurrently Non-Malleable Zero Knowledge in the Authenticated Public-Key Model
We consider a type of zero-knowledge protocols that are of interest for their
practical applications within networks like the Internet: efficient
zero-knowledge arguments of knowledge that remain secure against concurrent
man-in-the-middle attacks. In an effort to reduce the setup assumptions
required for efficient zero-knowledge arguments of knowledge that remain secure
against concurrent man-in-the-middle attacks, we consider a model, which we
call the Authenticated Public-Key (APK) model. The APK model seems to
significantly reduce the setup assumptions made by the CRS model (as no trusted
party or honest execution of a centralized algorithm are required), and can be
seen as a slightly stronger variation of the Bare Public-Key (BPK) model from
\cite{CGGM,MR}, and a weaker variation of the registered public-key model used
in \cite{BCNP}. We then define and study man-in-the-middle attacks in the APK
model. Our main result is a constant-round concurrent non-malleable
zero-knowledge argument of knowledge for any polynomial-time relation
(associated to a language in ), under the (minimal) assumption of
the existence of a one-way function family. Furthermore,We show time-efficient
instantiations of our protocol based on known number-theoretic assumptions. We
also note a negative result with respect to further reducing the setup
assumptions of our protocol to those in the (unauthenticated) BPK model, by
showing that concurrently non-malleable zero-knowledge arguments of knowledge
in the BPK model are only possible for trivial languages
Resettable Zero Knowledge in the Bare Public-Key Model under Standard Assumption
In this paper we resolve an open problem regarding resettable zero knowledge
in the bare public-key (BPK for short) model: Does there exist constant round
resettable zero knowledge argument with concurrent soundness for
in BPK model without assuming \emph{sub-exponential hardness}? We give a
positive answer to this question by presenting such a protocol for any language
in in the bare public-key model assuming only
collision-resistant hash functions against \emph{polynomial-time} adversaries.Comment: 19 pag
Automatic Recognition of Sunspots in HSOS Full-Disk Solar Images
A procedure is introduced to recognise sunspots automatically in solar
full-disk photosphere images obtained from Huairou Solar Observing Station,
National Astronomical Observatories of China. The images are first
pre-processed through Gaussian algorithm. Sunspots are then recognised by the
morphological Bot-hat operation and Otsu threshold. Wrong selection of sunspots
is eliminated by a criterion of sunspot properties. Besides, in order to
calculate the sunspots areas and the solar centre, the solar limb is extracted
by a procedure using morphological closing and erosion operations and setting
an adaptive threshold. Results of sunspot recognition reveal that the number of
the sunspots detected by our procedure has a quite good agreement with the
manual method. The sunspot recognition rate is 95% and error rate is 1.2%. The
sunspot areas calculated by our method have high correlation (95%) with the
area data from USAF/NOAA.Comment: 9 pages, 6 figures, 2 tables, accepted for publication in PAS
Role of noncoding RNA in vascular remodelling
Purpose of review: Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are becoming fundamentally important in the pathophysiology relating to injury-induced vascular remodelling. We highlight recent studies that demonstrate the involvement of ncRNAs in vein graft disease, in in-stent restenosis and in pulmonary arterial hypertension, with a particular focus on endothelial cell and vascular smooth muscle cell function. We also briefly discuss the emerging role of exosomal-derived ncRNAs and how this mechanism impacts on vascular function.
Recent findings: ncRNAs have been described as novel regulators in the pathophysiology of vascular injury, inflammation, and vessel wall remodelling. In particular, several studies have demonstrated that manipulation of miRNAs can reduce the burden of pathological vascular remodelling. Such studies have also shown that exosomal miRNA-mediated, cell-to-cell communication between endothelial cells and vascular smooth muscle cells is critical in the disease process. In addition to miRNAs, lncRNAs are emerging as regulators of vascular function in health and disease. Although lncRNAs are complex in both their sheer numbers and mechanisms of action, identifying their contribution to vascular disease is essential.
Summary: Given the important roles of ncRNAs in vascular injury and remodelling together will their capacity for cell-to-cell communication, manipulating ncRNA might provide novel therapeutic interventions
- …
