Under the guidance of the general theory developed for classical partial
differential equations (PDEs), we investigate the Riesz bases of wavelets in
the spaces where fractional PDEs usually work, and their applications in
numerically solving fractional elliptic differential equations (FEDEs). The
technique issues are solved and the detailed algorithm descriptions are
provided. Compared with the ordinary Galerkin methods, the wavelet Galerkin
method we propose for FEDEs has the striking benefit of efficiency, since the
condition numbers of the corresponding stiffness matrixes are small and
uniformly bounded; and the Toeplitz structure of the matrix still can be used
to reduce cost. Numerical results and comparison with the ordinary Galerkin
methods are presented to demonstrate the advantages of the wavelet Galerkin
method we provide.Comment: 20 pages, 0 figure