81,504 research outputs found

    Three-dimensional waves generated at Lindblad resonances in thermally stratified disks

    Get PDF
    We analyze the linear, 3D response to tidal forcing of a disk that is thin and thermally stratified in the direction normal to the disk plane. We model the vertical disk structure locally as a polytrope which represents a disk of high optical depth. We solve the 3D gas-dynamic equations semi-analytically in the neighborhood of a Lindblad resonance. These solutions match asymptotically on to those valid away from resonances and provide solutions valid at all radii. We obtain the following results. 1) A variety of waves are launched at resonance. However, the f mode carries more than 95% of the torque exerted at the resonance. 2) These 3D waves collectively transport exactly the amount of angular momentum predicted by the 2D torque formula. 3) Near resonance, the f mode occupies the full vertical extent of the disk. Away from resonance, the f mode becomes confined near the surface of the disk, and, in the absence of other dissipation mechanisms, damps via shocks. The radial length scale for this process is roughly r_L/m (for resonant radius r_L and azimuthal wavenumber m), independent of the disk thickness H. This wave channeling process is due to the variations of physical quantities in r and is not due to wave refraction. 4) However, the inwardly propagating f mode launched from an m=2 inner Lindblad resonance experiences relatively minor channeling. We conclude that for binary stars, tidally generated waves in highly optically thick circumbinary disks are subject to strong nonlinear damping by the channeling mechanism, while those in circumstellar accretion disks are subject to weaker nonlinear effects. We also apply our results to waves excited by young planets for which m is approximately r/H and conclude that the waves are damped on the scale of a few H.Comment: 15 pages, 3 figures, 2 colour plates, to be published in the Astrophysical Journa

    A Thermal-Nonthermal Inverse Compton Model for Cyg X-1

    Get PDF
    Using Monte Carlo methods to simulate the inverse Compton scattering of soft photons, we model the spectrum of the Galactic black hole candidate Cyg X-1, which shows evidence of a nonthermal tail extending beyond a few hundred keV. We assume an ad hoc sphere of leptons, whose energy distribution consists of a Maxwellian plus a high energy power-law tail, and inject 0.5 keV blackbody photons. The spectral data is used to constrain the nonthermal plasma fraction and the power-law index assuming a reasonable Maxwellian temperature and Thomson depth. A small but non-negligible fraction of nonthermal leptons is needed to explain the power-law tail.Comment: 5 pages, 2 PostScript figure, uses aipproc.sty, to appear in Proceedings of Fourth Compton Symposiu

    Quantitative rescattering theory for laser-induced high-energy plateau photoelectron spectra

    Get PDF
    A comprehensive quantitative rescattering (QRS) theory for describing the production of high-energy photoelectrons generated by intense laser pulses is presented. According to the QRS, the momentum distributions of these electrons can be expressed as the product of a returning electron wave packet with the elastic differential cross sections (DCS) between free electrons with the target ion. We show that the returning electron wave packets are determined mostly by the lasers only, and can be obtained from the strong field approximation. The validity of the QRS model is carefully examined by checking against accurate results from the solution of the time-dependent Schr\"odinger equation for atomic targets within the single active electron approximation. We further show that experimental photoelectron spectra for a wide range of laser intensity and wavelength can be explained by the QRS theory, and that the DCS between electrons and target ions can be extracted from experimental photoelectron spectra. By generalizing the QRS theory to molecular targets, we discuss how few-cycle infrared lasers offer a promising tool for dynamic chemical imaging with temporal resolution of a few femtoseconds.Comment: 19 pages, 19 figure

    A logarithmic generalization of tensor product theory for modules for a vertex operator algebra

    Full text link
    We describe a logarithmic tensor product theory for certain module categories for a ``conformal vertex algebra.'' In this theory, which is a natural, although intricate, generalization of earlier work of Huang and Lepowsky, we do not require the module categories to be semisimple, and we accommodate modules with generalized weight spaces. The corresponding intertwining operators contain logarithms of the variables.Comment: 39 pages. Misprints corrected. Final versio

    Characteristics of Bose-Einstein condensation in an optical lattice

    Full text link
    We discuss several possible experimental signatures of the Bose-Einstein condensation (BEC) transition for an ultracold Bose gas in an inhomogeneous optical lattice. Based on the commonly used time-of-flight imaging technique, we show that the momentum-space density profile in the first Brillouin zone, supplemented by the visibility of interference patterns, provides valuable information about the system. In particular, by crossing the BEC transition temperature, the appearance of a clear bimodal structure sets a qualitative and universal signature of this phase transition. Furthermore, the momentum distribution can also be applied to extract the condensate fraction, which may serve as a promising thermometer in such a system.Comment: 12 pages, 13 figures; Revised version with new figures; Phys. Rev. A 77, 043626 (2008

    On Bose-Einstein condensate inside moving exciton-phonon droplets

    Full text link
    We explore a nonlinear field model to describe the interplay between the ability of excitons to be Bose condensed and their interaction with other modes of a crystal. We apply our consideration to the long-living paraexcitons in Cu2O. Taking into account the exciton-phonon interaction and introducing a coherent phonon part of the moving condensate, we solve quasi-stationary equations for the exciton-phonon condensate. These equations support localized solutions, and we discuss the conditions for the inhomogeneous condensate to appear in the crystal. Allowable values of the characteristic width of ballistic condensates are estimated. The stability conditions of the moving condensate are analyzed by use of Landau arguments, and Landau critical parameters appear in the theory. It follows that, under certain conditions, the condensate can move through the crystal as a stable droplet. To separate the coherent and non-coherent parts of the exciton-phonon packet, we suggest to turn off the phonon wind by the changes in design of the 3D crystal and boundary conditions for the moving droplet.Comment: 13 pages, LaTeX, three eps figures are incorporated by epsf. submitted to Phys. Letters

    The Environment of ``E+A'' Galaxies

    Get PDF
    The violent star formation history of ``E+A'' galaxies and their detection almost exclusively in distant clusters is frequently used to link them to the ``Butcher-Oemler effect'' and to argue that cluster environment influences galaxy evolution. From 11113 spectra in the Las Campanas Redshift Survey, we have obtained a unique sample of 21 nearby ``E+A" galaxies. Surprisingly, a large fraction (about 75%) of these ``E+A''s lie in the field. Therefore, interactions with the cluster environment, in the form of the ICM or cluster potential, are not essential for ``E+A'' formation. If one mechanism is responsible for ``E+A''s, their existence in the field and the tidal features in at least 5 of the 21 argue that galaxy-galaxy interactions and mergers are that mechanism. The most likely environments for such interactions are poor groups, which have lower velocity dispersions than clusters and higher galaxy densities than the field. In hierarchical models, groups fall into clusters in greater numbers at intermediate redshifts than they do today. Thus, the Butcher-Oemler effect may reflect the typical evolution of galaxies in groups and in the field rather than the influence of clusters on star formation in galaxies. This abstract is abridged.Comment: 39 uuencoded, compressed pages (except Fig 1), complete preprint at ftp://ociw.edu/pub/aiz/eplusa.ps, ApJ, submitte
    corecore