97,014 research outputs found

    Migration and Final Location of Hot Super Earths in the Presence of Gas Giants

    Full text link
    Based on the conventional sequential-accretion paradigm, we have proposed that, during the migration of first-born gas giants outside the orbits of planetary embryos, super Earth planets will form inside the 2:1 resonance location by sweeping of mean motion resonances (Zhou et al. 2005). In this paper, we study the subsequent evolution of a super Earth (m_1) under the effects of tidal dissipation and perturbation from a first-born gas giant (m_2) in an outside orbit. Secular perturbation and mean motion resonances (especially 2:1 and 5:2 resonances) between m_1 and m_2 excite the eccentricity of m_1, which causes the migration of m_1 and results in a hot super Earth. The calculated final location of the hot super Earth is independent of the tidal energy dissipation factor Q'. The study of migration history of a Hot Super Earth is useful to reveal its Q' value and to predict its final location in the presence of one or more hot gas giants. When this investigation is applied to the GJ876 system, it correctly reproduces the observed location of GJ876d around 0.02AU.Comment: 7 pages, 4 figure

    Explaining the observed velocity dispersion of dwarf galaxies by baryonic mass loss during the first collapse

    Full text link
    In the widely adopted LambdaCDM scenario for galaxy formation, dwarf galaxies are the building blocks of larger galaxies. Since they formed at relatively early epochs when the background density was relatively high, they are expected to retain their integrity as satellite galaxies when they merge to form larger entities. Although many dwarf spheroidal galaxies (dSphs) are found in the galactic halo around the Milky Way, their phase space density (or velocity dispersion) appears to be significantly smaller than that expected for satellite dwarf galaxies in the LambdaCDM scenario. In order to account for this discrepancy, we consider the possibility that they may have lost a significant fraction of their baryonic matter content during the first infall at the Hubble expansion turnaround. Such mass loss arises naturally due to the feedback by relatively massive stars which formed in their centers briefly before the maximum contraction. Through a series of N-body simulations, we show that the timely loss of a significant fraction of the dSphs initial baryonic matter content can have profound effects on their asymptotic half-mass radius, velocity dispersion, phase-space density, and the mass fraction between residual baryonic and dark matter.Comment: 6 pages, 6 figures, accepted for publication in the Ap

    Interaction of Close-in Planets with the Magnetosphere of their Host Stars I: Diffusion, Ohmic Dissipation of Time Dependent Field, Planetary Inflation, and Mass Loss

    Full text link
    The unanticipated discovery of the first close-in planet around 51 Peg has rekindled the notion that shortly after their formation outside the snow line, some planets may have migrated to the proximity of their host stars because of their tidal interaction with their nascent disks. If these planets indeed migrated to their present-day location, their survival would require a halting mechanism in the proximity of their host stars. Most T Tauri stars have strong magnetic fields which can clear out a cavity in the innermost regions of their circumstellar disks and impose magnetic induction on the nearby young planets. Here we consider the possibility that a magnetic coupling between young stars and planets could quench the planet's orbital evolution. After a brief discussion of the complexity of the full problem, we focus our discussion on evaluating the permeation and ohmic dissipation of the time dependent component of the stellar magnetic field in the planet's interior. Adopting a model first introduced by C. G. Campbell for interacting binary stars, we determine the modulation of the planetary response to the tilted magnetic field of a non-synchronously spinning star. We first compute the conductivity in the young planets, which indicates that the stellar field can penetrate well into the planet's envelope in a synodic period. For various orbital configurations, we show that the energy dissipation rate inside the planet is sufficient to induce short-period planets to inflate. This process results in mass loss via Roche lobe overflow and in the halting of the planet's orbital migration.Comment: 47 pages, 12 figure

    The study of surface acoustic wave charge transfer device

    Get PDF
    A surface acoustic wave-charge transfer device, consisting of an n-type silicon substrate, a thermally grown silicon dioxide layer, and a sputtered film of piezoelectric zinc oxide is proposed as a means of circumventing problems associated with charge-coupled device (CCD) applications in memory, signal processing, and imaging. The proposed device creates traveling longitudinal electric fields in the silicon and replaces the multiphase clocks in CCD's. The traveling electric fields create potential wells which carry along charges stored there. These charges may be injected into the wells by light or by using a p-n junction as in conventional CCD's

    On the Survival of Short-Period Terrestrial Planets

    Full text link
    The currently feasible method of detection of Earth-mass planets is transit photometry, with detection probability decreasing with a planet's distance from the star. The existence or otherwise of short-period terrestrial planets will tell us much about the planet formation process, and such planets are likely to be detected first if they exist. Tidal forces are intense for short-period planets, and result in decay of the orbit on a timescale which depends on properties of the star as long as the orbit is circular. However, if an eccentric companion planet exists, orbital eccentricity (eie_i) is induced and the decay timescale depends on properties of the short-period planet, reducing by a factor of order 105ei210^5 e_i^2 if it is terrestrial. Here we examine the influence companion planets have on the tidal and dynamical evolution of short-period planets with terrestrial structure, and show that the relativistic potential of the star is fundamental to their survival.Comment: 13 pages, 2 figures, accepted for publication in Ap

    Tidal Barrier and the Asymptotic Mass of Proto Gas-Giant Planets

    Full text link
    Extrasolar planets found with radial velocity surveys have masses ranging from several Earth to several Jupiter masses. While mass accretion onto protoplanetary cores in weak-line T-Tauri disks may eventually be quenched by a global depletion of gas, such a mechanism is unlikely to have stalled the growth of some known planetary systems which contain relatively low-mass and close-in planets along with more massive and longer period companions. Here, we suggest a potential solution for this conundrum. In general, supersonic infall of surrounding gas onto a protoplanet is only possible interior to both of its Bondi and Roche radii. At a critical mass, a protoplanet's Bondi and Roche radii are equal to the disk thickness. Above this mass, the protoplanets' tidal perturbation induces the formation of a gap. Although the disk gas may continue to diffuse into the gap, the azimuthal flux across the protoplanets' Roche lobe is quenched. Using two different schemes, we present the results of numerical simulations and analysis to show that the accretion rate increases rapidly with the ratio of the protoplanet's Roche to Bondi radii or equivalently to the disk thickness. In regions with low geometric aspect ratios, gas accretion is quenched with relatively low protoplanetary masses. This effect is important for determining the gas-giant planets' mass function, the distribution of their masses within multiple planet systems around solar type stars, and for suppressing the emergence of gas-giants around low mass stars

    On the Tidal Dissipation of Obliquity

    Full text link
    We investigate tidal dissipation of obliquity in hot Jupiters. Assuming an initial random orientation of obliquity and parameters relevant to the observed population, the obliquity of hot Jupiters does not evolve to purely aligned systems. In fact, the obliquity evolves to either prograde, retrograde or 90^{o} orbits where the torque due to tidal perturbations vanishes. This distribution is incompatible with observations which show that hot jupiters around cool stars are generally aligned. This calls into question the viability of tidal dissipation as the mechanism for obliquity alignment of hot Jupiters around cool stars.Comment: 6 pages, 4 figures, accepted at ApJ
    • 

    corecore