180,916 research outputs found
Quark Coalescence with Quark Number Conservation and the Effect on Quark-Hadron Scaling
We develop a new formulation of the quark coalescence model by including the
quark number conservation in order to describe the hadronization of the bulk of
the quark-gluon plasma. The scalings between hadron and quark phase space
distributions are shown to depend on the transverse momentum. For hard quarks,
our general scalings reproduce the usual quadratic scaling relation for mesons
and the cubic scaling relation for baryons. For softer quarks, however, the
inclusion of the quark number conservation leads to a linear scaling for the
hadron species that dominates the quark number of each flavor, while the
scalings of non-dominant hadrons depend on the coalescence dynamics. For charm
mesons, we find that the distribution of soft mesons does not depend on the
light quark distribution but the distribution of soft mesons is
inversely correlated to the light quark distribution.Comment: Added 6 more equations to explain the derivations; added discussions;
final published versio
Pore-scale dynamics and the multiphase Darcy law
Synchrotron x-ray microtomography combined with sensitive pressure differential measurements were used to study flow during steady-state injection of equal volume fractions of two immiscible fluids of similar viscosity through a 57-mm-long porous sandstone sample for a wide range of flow rates. We found three flow regimes. (1) At low capillary numbers, Ca, representing the balance of viscous to capillary forces, the pressure gradient, ∇ P , across the sample was stable and proportional to the flow rate (total Darcy flux) q t (and hence capillary number), confirming the traditional conceptual picture of fixed multiphase flow pathways in porous media. (2) Beyond Ca ∗ ≈ 10 − 6 , pressure fluctuations were observed, while retaining a linear dependence between flow rate and pressure gradient for the same fractional flow. (3) Above a critical value Ca > Ca i ≈ 10 − 5 we observed a power-law dependence with ∇ P ∼ q a t with a ≈ 0.6 associated with rapid fluctuations of the pressure differential of a magnitude equal to the capillary pressure. At the pore scale a transient or intermittent occupancy of portions of the pore space was captured, where locally flow paths were opened to increase the conductivity of the phases. We quantify the amount of this intermittent flow and identify the onset of rapid pore-space rearrangements as the point when the Darcy law becomes nonlinear. We suggest an empirical form of the multiphase Darcy law applicable for all flow rates, consistent with the experimental results
Doppler Amplification of Motion of a Trapped Three-Level Ion
The system of a trapped ion translationally excited by a blue-detuned
near-resonant laser, sometimes described as an instance of a phonon laser, has
recently received attention as interesting in its own right and for its
application to non-destructive readout of internal states of non-fluorescing
ions. Previous theoretical work has been limited to cases of two-level ions.
Here, we perform simulations to study the dynamics of a phonon laser involving
the -type ^{138}\mbox{Ba}^{+} ion, in which coherent population
trapping effects lead to different behavior than in the previously studied
cases. We also explore optimization of the laser parameters to maximize
amplification gain and signal-to-noise ratio for internal state readout
Towards Long-endurance Flight: Design and Implementation of a Variable-pitch Gasoline-engine Quadrotor
Majority of today's fixed-pitch, electric-power quadrotors have short flight
endurance ( 1 hour) which greatly limits their applications. This paper
presents a design methodology for the construction of a long-endurance
quadrotor using variable-pitch rotors and a gasoline-engine. The methodology
consists of three aspects. Firstly, the rotor blades and gasoline engine are
selected as a pair, so that sufficient lift can be comfortably provided by the
engine. Secondly, drivetrain and airframe are designed. Major challenges
include airframe vibration minimization and power transmission from one engine
to four rotors while keeping alternate rotors contra-rotating. Lastly, a PD
controller is tuned to facilitate preliminary flight tests. The methodology has
been verified by the construction and successful flight of our gasoline
quadrotor prototype, which is designed to have a flight time of 2 to 3 hours
and a maximum take-off weight of 10 kg.Comment: 6 page
LIFE3: A predictive costing tool for digital collections
Predicting the costs of long-term digital preservation is a crucial yet complex task for even the largest repositories and institutions. For smaller projects and individual researchers faced with preservation requirements, the problem is even more overwhelming, as they lack the accumulated experience of the former. Yet being able to estimate future preservation costs is vital to answering a range of important questions for each. The LIFE (Life Cycle Information for E-Literature) project, which has just completed its third phase, helps institutions and researchers address these concerns, reducing the financial and preservation risks, and allowing decision makers to assess a range of options in order to achieve effective preservation while operating within financial restraints. The project is a collaboration between University College London (UCL), The British Library and the Humanities Advanced Technology and Information Institute (HATII) at the University of Glasgow. Funding has been supplied in the UK by the Joint Information Systems Committee (JISC) and the Research Information Network (RIN)
Effective video multicast over wireless internet
With the rapid growth of wireless networks and great success of Internet video, wireless video services are expected to be widely deployed in the near future. As different types of wireless networks are converging into all IP networks, i.e., the Internet, it is important to study video delivery over the wireless Internet. This paper proposes a novel end-system based adaptation protocol calledWireless Hybrid Adaptation Layered Multicast (WHALM) protocol for layered video multicast over wireless Internet. In WHALM the sender dynamically collects bandwidth distribution from the receivers and uses an optimal layer rate allocation mechanism to reduce the mismatches between the coarse-grained layer subscription levels and the heterogeneous and dynamic rate requirements from the receivers, thus maximizing the degree of satisfaction of all the receivers in a multicast session. Based on sampling theory and theory of probability, we reduce the required number of bandwidth feedbacks to a reasonable degree and use a scalable feedback mechanism to control the feedback process practically. WHALM is also tuned to perform well in wireless networks by integrating an end-to-end loss differentiation algorithm (LDA) to differentiate error losses from congestion losses at the receiver side. With a series of simulation experiments over NS platform, WHALM has been proved to be able to greatly improve the degree of satisfaction of all the receivers while avoiding congestion collapse on the wireless Internet
- …
