111,459 research outputs found
Electron-phonon interactions and high-temperature thermodynamics of vanadium and its alloys
Inelastic neutron scattering was used to measure the phonon densities of states (DOSs) for pure V and solid solutions of V with 6 to 7at% of Co, Nb, and Pt, at temperatures from 10 K to 1323 K. Ancillary measurements of heat capacity and thermal expansion are reported on V and V-7at%Co and used to help identify the different sources of entropy. Pure V exhibits an anomalous anharmonic stiffening of phonons with increasing temperature. This anharmonicity is suppressed by Co and Pt, but not by isoelectronic Nb solutes. The changes in phonon frequency with alloying and with temperature both correlate to the decrease in electron density of states (DOS) at the Fermi level as calculated using density functional theory. The effects of both temperature and alloying can be understood in terms of an adiabatic electron-phonon interaction (EPI), which broadens sharp features in the electron DOS. These results show that the adiabatic EPI can influence the phonon thermodynamics at temperatures exceeding 1000 K, and that thermal trends of phonons may help assess the strength of the EPI
Phase transitions in exactly solvable decorated model of localized Ising spins and itinerant electrons
A hybrid lattice-statistical model of doubly decorated two-dimensional
lattices, which have localized Ising spins at its nodal sites and itinerant
electrons delocalized over decorating sites, is exactly solved with the help of
a generalized decoration-iteration transformation. Under the assumption of a
quarter filling of each couple of the decorating sites, the ground state
constitutes either spontaneously long-range ordered ferromagnetic or
ferrimagnetic phase in dependence on whether the ferromagnetic or
antiferromagnetic interaction between the localized Ising spins and itinerant
electrons is considered. The critical temperature of the spontaneously
long-range ordered phases monotonically increases upon strengthening the ratio
between the kinetic term and the Ising-type exchange interaction.Comment: 4 pages, 3 figures, presented at International Conference on
Magnetism 2009 to be held on July 26-31 in Karlsruhe, Germany. submitted to
J. Phys.: Conf. Se
A sharp stability criterion for the Vlasov-Maxwell system
We consider the linear stability problem for a 3D cylindrically symmetric
equilibrium of the relativistic Vlasov-Maxwell system that describes a
collisionless plasma. For an equilibrium whose distribution function decreases
monotonically with the particle energy, we obtained a linear stability
criterion in our previous paper. Here we prove that this criterion is sharp;
that is, there would otherwise be an exponentially growing solution to the
linearized system. Therefore for the class of symmetric Vlasov-Maxwell
equilibria, we establish an energy principle for linear stability. We also
treat the considerably simpler periodic 1.5D case. The new formulation
introduced here is applicable as well to the nonrelativistic case, to other
symmetries, and to general equilibria
Graphene microwave transistors on sapphire substrates
We have developed metal-oxide graphene field-effect transistors (MOGFETs) on
sapphire substrates working at microwave frequencies. For monolayers, we obtain
a transit frequency up to ~ 80 GHz for a gate length of 200 nm, and a power
gain maximum frequency of about ~ 3 GHz for this specific sample. Given the
strongly reduced charge noise for nanostructures on sapphire, the high
stability and high performance of this material at low temperature, our MOGFETs
on sapphire are well suited for a cryogenic broadband low-noise amplifier
TimeMachine: Timeline Generation for Knowledge-Base Entities
We present a method called TIMEMACHINE to generate a timeline of events and
relations for entities in a knowledge base. For example for an actor, such a
timeline should show the most important professional and personal milestones
and relationships such as works, awards, collaborations, and family
relationships. We develop three orthogonal timeline quality criteria that an
ideal timeline should satisfy: (1) it shows events that are relevant to the
entity; (2) it shows events that are temporally diverse, so they distribute
along the time axis, avoiding visual crowding and allowing for easy user
interaction, such as zooming in and out; and (3) it shows events that are
content diverse, so they contain many different types of events (e.g., for an
actor, it should show movies and marriages and awards, not just movies). We
present an algorithm to generate such timelines for a given time period and
screen size, based on submodular optimization and web-co-occurrence statistics
with provable performance guarantees. A series of user studies using Mechanical
Turk shows that all three quality criteria are crucial to produce quality
timelines and that our algorithm significantly outperforms various baseline and
state-of-the-art methods.Comment: To appear at ACM SIGKDD KDD'15. 12pp, 7 fig. With appendix. Demo and
other info available at http://cs.stanford.edu/~althoff/timemachine
Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods
This article is devoted to computing the lower and upper bounds of the
Laplace eigenvalue problem. By using the special nonconforming finite elements,
i.e., enriched Crouzeix-Raviart element and extension , we get
the lower bound of the eigenvalue. Additionally, we also use conforming finite
elements to do the postprocessing to get the upper bound of the eigenvalue. The
postprocessing method need only to solve the corresponding source problems and
a small eigenvalue problem if higher order postprocessing method is
implemented. Thus, we can obtain the lower and upper bounds of the eigenvalues
simultaneously by solving eigenvalue problem only once. Some numerical results
are also presented to validate our theoretical analysis.Comment: 19 pages, 4 figure
On Using Active Learning and Self-Training when Mining Performance Discussions on Stack Overflow
Abundant data is the key to successful machine learning. However, supervised
learning requires annotated data that are often hard to obtain. In a
classification task with limited resources, Active Learning (AL) promises to
guide annotators to examples that bring the most value for a classifier. AL can
be successfully combined with self-training, i.e., extending a training set
with the unlabelled examples for which a classifier is the most certain. We
report our experiences on using AL in a systematic manner to train an SVM
classifier for Stack Overflow posts discussing performance of software
components. We show that the training examples deemed as the most valuable to
the classifier are also the most difficult for humans to annotate. Despite
carefully evolved annotation criteria, we report low inter-rater agreement, but
we also propose mitigation strategies. Finally, based on one annotator's work,
we show that self-training can improve the classification accuracy. We conclude
the paper by discussing implication for future text miners aspiring to use AL
and self-training.Comment: Preprint of paper accepted for the Proc. of the 21st International
Conference on Evaluation and Assessment in Software Engineering, 201
Effect of annealing on electron dephasing in three-dimensional polycrystalline metals
We have studied the effect of thermal annealing on electron dephasing times
in three-dimensional polycrystalline metals. Measurements are
performed on as-sputtered and annealed AuPd and Sb thick films, using
weak-localization method. In all samples, we find that possesses an
extremely weak temperature dependence as . Our results show that the
effect of annealing is non-universal, and it depends strongly on the amount of
disorder quenched in the microstructures during deposition. The observed
"saturation" behavior of cannot be easily explained by magnetic
scattering. We suggest that the issue of saturation can be better addressed in
three-dimensional, rather than lower-dimensional, structures
- …