46 research outputs found

    Synthesis of 20S-Hydroxyvitamin D3 Analogs and Their 1α-Hydroxyl Derivatives as Potent Anti-inflammatory Agents

    Get PDF
    Rheumatoid arthritis (RA) is one of the autoimmune diseases, and is affecting 2.5 million Americans in total. Among the treatment options of RA, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] is the only steroidal drug used clinically for anti-inflammatory and immune diseases. However, long-term use of 1,25(OH)2D3 (625 µg/day) in human would result in hypercalcemia (toxicity), and 1,25(OH)2D3 has substantial hypercalcemic effects (toxicity) in mice at a dose as low as only 2 µg/kg. Fortunately, during the investigation of novel metabolic pathway of vitamin D3 by cytochrome P450 enzymes, we found 20S-hydroxyvitamin D3 [20S(OH)D3] as a good lead compound. 20S(OH)D3 suppressed disease symptoms at 2 µg/kg in collagen-induced arthritis model, and high doses of 20S(OH)D3 (up to 30 µg/kg) do not cause hypercalcemia in rats or mice. Thus 20S(OH)D3 has the potential to be structurally optimized for providing anti-inflammatory agents without toxicity. In this study, four series of 20S(OH)D3 analogs have been synthesized and studied, they are C20 Gemini analogs, C24-hydroxlated analogs, C23-hydroxlated analogs and C24 modified analogs together with their 1α-hydroxylated derivatives. Since D3 analogs with two symmetric side chains (Gemini analogs) result in potent activation of the vitamin D receptor (VDR), we hypothesized that the chain length and composition of these types of analogs also containing a 20-hydroxyl group would affect their biological activities. In this study, we designed and synthesized a series of Gemini 20S(OH)D3 analogs. Biological tests showed that some of these analogs are partial VDR activators and can significantly stimulate the expression of mRNA for VDR and VDR-regulated genes including CYP24A1 and transient receptor potential cation channel V6 (TRPV6). These analogs inhibited the proliferation of melanoma cells with potency comparable to that of 1α,25-dihydroxyvitamin D3. Moreover, these analogs reduced the level of interferon γ and up-regulated the expression of leukocyte associated immunoglobulin-like receptor 1 in splenocytes, indicating that they have potent anti-inflammatory activities. There are no clear correlations between the Gemini chain length and their VDR activation or biological activities, consistent with the high flexibility of the ligand-binding pocket of the VDR. Bioactive vitamin D3 metabolites 20S,24S-dihydroxyvitamin D3 [20S,24S(OH)2D3] and 20S,24R-dihydroxyvitamin D3 [20S,24R(OH)2D3] were chemically synthesized and confirmed to be identical to their enzymatically generated counterparts. The absolute configurations at C24 and its influence on the kinetics of 1α-hydroxylation by CYP27B1 were determined. Their corresponding 1α-hydroxyl derivatives were subsequently produced. Biological comparisons of these products showed different properties with respect to vitamin D3 receptor activation, anti-inflammatory activity, and anti-proliferative activity, with 1α,20S,24R(OH)2D3 being the most potent compound. The vitamin D3 metabolite, 20S,23S-dihydroxyvitamin D3, was chemically synthesized for the first time, and identified to be the same as the enzymatically produced metabolite. The C23 absolute configurations of both 20S,23S/R-dihydroxyvitamin D3 epimers were unambiguously assigned by NMR and Mosher ester analysis. Their kinetics of CYP27B1 metabolism were investigated during the production of their 1α-hydroxylated derivatives. Bioactivities of these products were compared in terms of vitamin D3 receptor activation, anti-inflammatory and anti-proliferative activities. Four C24 modified analogs of 20S(OH)D3 were chemically synthesized and comprehensively tested against different activities together with their 1α-hydroxyl derivatives. Metabolism of 20S(OH)D3 analogs against cytochrome P450 27B1 (CYP27B1, activation enzyme) and CYP24A1 (catabolism enzyme) suggested that they are better substrates of both enzymes than 20S(OH)D3, and can be activated (1α-hydroxylated) by CYP27B1 except 23-amide which is not a substrate but an inhibitor of CYP27B1. Their 1α-OH derivatives were potent vitamin D receptor (VDR) agonists comparable with 1,25(OH)2D3 although they themselves showed weak or none VDR stimulation activity in three cell lines. To understand the molecular interactions between these analog and VDR, two analogs together with 20S(OH)D3 and 1,25(OH)2D3 were co-crystalized with human VDR. These analogs and 1α-OH derivatives significantly upregulated the mRNA expression of VDR target genes, suggesting their actions via VDR, at least partially. In addition, their anti-inflammatory activities have been investigated in aspect of IFNγ inhibition in splenocytes. This study demonstrates the mechanisms of action of 20S(OH)D3 anlogs, is of great importance for future drug development of anti-inflammatory agents. From the above-mentioned studies, we learned that the introduction of 1α-hydroxy could potentiate the anti-inflammatory activities of 20S(OH)D3 and its anlogs. Thus it would be beneficial to further investigate the 1α,20S-Dihydroxyvitamin D3 [1,20S(OH)2D3] analogs. 1,20S(OH)2D3 was chemically synthesized for the first time. A semi-reduced intermediate of the Birch reduction for 1α-OH formation was obtained for the first time, and thus was used to propose the reaction mechanism. X-ray crystallography analysis of the key intermediate confirmed the formation of 1α-OH. 1,20S(OH)2D3 binds efficiently in vitamin D receptor (VDR), being similar with its native ligand 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3]. However, their co-crystal structures revealed differential molecular interactions of 20S-OH and 25-OH in VDR, which may help understand their biological activities. In addition, 1,20S(OH)2D3 functions as a VDR agonist with stronger/comparable activities than/with 1,25(OH)2D3 in aspects of VDR stimulation and regulating VDR downstream genes, and inhibition of inflammatory markers. This study offers a convenient synthetic route using a novel intermediate 1α,3β-diacetoxypregn-5-en-20-one, and provides molecular basis of design for drug development of 1,20S(OH)2D3 and its analogs. Overall, we have synthesized and biologically evaluated four series of 20S(OH)D3 analogs for their potential applications in anti-inflammatory diseases such as RA. The synthetic scheme of 1,20S(OH)2D3 could pioneer future development of its analogs. These findings will provide important guidance for the development of next generation anti-RA agents using 20S(OH)2D3 scaffold

    Activity-Based Hydrazine Probes for Protein Profiling of Electrophilic Functionality in Therapeutic Targets

    Get PDF
    Most known probes for activity-based protein profiling (ABPP) use electrophilic groups that tag a single type of nucleophilic amino acid to identify cases in which its hyper-reactivity underpins function. Much important biochemistry derives from electrophilic enzyme cofactors, transient intermediates, and labile regulatory modifications, but ABPP probes for such species are underdeveloped. Here, we describe a versatile class of probes for this less charted hemisphere of the proteome. The use of an electron-rich hydrazine as the common chemical modifier enables covalent targeting of multiple, pharmacologically important classes of enzymes bearing diverse organic and inorganic cofactors. Probe attachment occurs by both polar and radicaloid mechanisms, can be blocked by molecules that occupy the active sites, and depends on the proper poise of the active site for turnover. These traits will enable the probes to be used to identify specific inhibitors of individual members of these multiple enzyme classes, making them uniquely versatile among known ABPP probes

    Hydrazines as versatile chemical biology probes and drug-discovery tools for cofactor-dependent enzymes [preprint]

    Get PDF
    Known chemoproteomic probes generally use warheads that tag a single type of amino acid or modified form thereof to identify cases in which its hyper-reactivity underpins function. Much important biochemistry derives from electron-poor enzyme cofactors, transient intermediates and chemically-labile regulatory modifications, but probes for such species are underdeveloped. Here, we have innovated a versatile class of chemoproteomic probes for this less charted hemisphere of the proteome by using hydrazine as the common chemical warhead. Its electron-rich nature allows it to react by both polar and radicaloid mechanisms and to target multiple, pharmacologically important functional classes of enzymes bearing diverse organic and inorganic cofactors. Probe attachment can be blocked by active-site-directed inhibitors, and elaboration of the warhead supports connection of a target to a lead compound. The capacity of substituted hydrazines to profile, discover and inhibit diverse cofactor-dependent enzymes enables cell and tissue imaging and makes this platform useful for enzyme and drug discovery

    Discovery and targeting of a noncanonical mechanism of sarcoma resistance to ADI-PEG20 mediated by the microenvironment

    Get PDF
    PURPOSE: Many cancers lack argininosuccinate synthetase 1 (ASS1), the rate-limiting enzyme of arginine biosynthesis. This deficiency causes arginine auxotrophy, targetable by extracellular arginine-degrading enzymes such as ADI-PEG20. Long-term tumor resistance has thus far been attributed solely to ASS1 reexpression. This study examines the role of ASS1 silencing on tumor growth and initiation and identifies a noncanonical mechanism of resistance, aiming to improve clinical responses to ADI-PEG20. EXPERIMENTAL DESIGN: Tumor initiation and growth rates were measured for a spontaneous Ass1 knockout (KO) murine sarcoma model. Tumor cell lines were generated, and resistance to arginine deprivation therapy was studied in vitro and in vivo. RESULTS: Conditional Ass1 KO affected neither tumor initiation nor growth rates in a sarcoma model, contradicting the prevalent idea that ASS1 silencing confers a proliferative advantage. Ass1 KO cells grew robustly through arginine starvation in vivo, while ADI-PEG20 remained completely lethal in vitro, evidence that pointed toward a novel mechanism of resistance mediated by the microenvironment. Coculture with Ass1-competent fibroblasts rescued growth through macropinocytosis of vesicles and/or cell fragments, followed by recycling of protein-bound arginine through autophagy/lysosomal degradation. Inhibition of either macropinocytosis or autophagy/lysosomal degradation abrogated this growth support effect in vitro and in vivo. CONCLUSIONS: Noncanonical, ASS1-independent tumor resistance to ADI-PEG20 is driven by the microenvironment. This mechanism can be targeted by either the macropinocytosis inhibitor imipramine or the autophagy inhibitor chloroquine. These safe, widely available drugs should be added to current clinical trials to overcome microenvironmental arginine support of tumors and improve patient outcomes

    Methylprednisolone as Adjunct to Endovascular Thrombectomy for Large-Vessel Occlusion Stroke

    Get PDF
    Importance It is uncertain whether intravenous methylprednisolone improves outcomes for patients with acute ischemic stroke due to large-vessel occlusion (LVO) undergoing endovascular thrombectomy. Objective To assess the efficacy and adverse events of adjunctive intravenous low-dose methylprednisolone to endovascular thrombectomy for acute ischemic stroke secondary to LVO. Design, Setting, and Participants This investigator-initiated, randomized, double-blind, placebo-controlled trial was implemented at 82 hospitals in China, enrolling 1680 patients with stroke and proximal intracranial LVO presenting within 24 hours of time last known to be well. Recruitment took place between February 9, 2022, and June 30, 2023, with a final follow-up on September 30, 2023.InterventionsEligible patients were randomly assigned to intravenous methylprednisolone (n = 839) at 2 mg/kg/d or placebo (n = 841) for 3 days adjunctive to endovascular thrombectomy. Main Outcomes and Measures The primary efficacy outcome was disability level at 90 days as measured by the overall distribution of the modified Rankin Scale scores (range, 0 [no symptoms] to 6 [death]). The primary safety outcomes included mortality at 90 days and the incidence of symptomatic intracranial hemorrhage within 48 hours. Results Among 1680 patients randomized (median age, 69 years; 727 female [43.3%]), 1673 (99.6%) completed the trial. The median 90-day modified Rankin Scale score was 3 (IQR, 1-5) in the methylprednisolone group vs 3 (IQR, 1-6) in the placebo group (adjusted generalized odds ratio for a lower level of disability, 1.10 [95% CI, 0.96-1.25]; P = .17). In the methylprednisolone group, there was a lower mortality rate (23.2% vs 28.5%; adjusted risk ratio, 0.84 [95% CI, 0.71-0.98]; P = .03) and a lower rate of symptomatic intracranial hemorrhage (8.6% vs 11.7%; adjusted risk ratio, 0.74 [95% CI, 0.55-0.99]; P = .04) compared with placebo. Conclusions and Relevance Among patients with acute ischemic stroke due to LVO undergoing endovascular thrombectomy, adjunctive methylprednisolone added to endovascular thrombectomy did not significantly improve the degree of overall disability.Trial RegistrationChiCTR.org.cn Identifier: ChiCTR210005172

    ensuring the consistent concurrent execution of service composition under relaxed isolation

    No full text
    IEEE Comp Soc TCECIn web service environment, B2B applications are usually built by composting pre-existing individual services, which are executed across multiple loosely-coupled autonomous organizations. The transactional challenges raised by the compositio

    Rapid Screening of Potential Phosphodiesterase Inhibitors from the Roots of Ilex pubescens

    No full text
    The cyclic nucleotide phosphodiesterase (PDE) plays an important role in regulating the levels of second messenger molecules cAMP and cGMP. Various PDE inhibitors have been successfully developed into drugs for targeted diseases. In addition, PDE inhibitors can also be found in different foods and natural medicines. In this study, ultrafiltration liquid chromatography–diode-array detector–electrospray ionization–ion-trap–time-of-flight–mass spectrometry (ultrafiltration LC–DAD–ESI–IT–TOF–MS) was applied to screen PDE inhibitors from the roots of Ilex pubescens Hook. et Arn. As a result, 11 major compounds were identified in I. pubescens roots, with nine compounds as potential PDE inhibitors, among which five were further confirmed to be active against PDEI and PDE5A dose-dependently in vitro, with ilexsaponin A1 and ilexsaponin B2 being the strongest. HPLC quantification of these bioactive compounds suggested that they are major components in the plant. The results demonstrate that ultrafiltration LC–DAD–ESI–IT–TOF–MS is an efficient method for rapid screening of PDE inhibitors from natural medicines

    Tubulin Inhibitor-Based Antibody-Drug Conjugates for Cancer Therapy

    No full text
    Antibody-drug conjugates (ADCs) are a class of highly potent biopharmaceutical drugs generated by conjugating cytotoxic drugs with specific monoclonal antibodies through appropriate linkers. Specific antibodies used to guide potent warheads to tumor tissues can effectively reduce undesired side effects of the cytotoxic drugs. An in-depth understanding of antibodies, linkers, conjugation strategies, cytotoxic drugs, and their molecular targets has led to the successful development of several approved ADCs. These ADCs are powerful therapeutics for cancer treatment, enabling wider therapeutic windows, improved pharmacokinetic/pharmacodynamic properties, and enhanced efficacy. Since tubulin inhibitors are one of the most successful cytotoxic drugs in the ADC armamentarium, this review focuses on the progress in tubulin inhibitor-based ADCs, as well as lessons learned from the unsuccessful ADCs containing tubulin inhibitors. This review should be helpful to facilitate future development of new generations of tubulin inhibitor-based ADCs for cancer therapy

    Discovery of Potent and Selective Inhibitors against Protein-Derived Electrophilic Cofactors

    No full text
    Electrophilic cofactors are widely distributed in nature and play important roles in many physiological and disease processes, yet they have remained blind spots in traditional activity-based protein profiling (ABPP) approaches that target nucleophiles. More recently, reverse-polarity (RP)-ABPP using hydrazine probes identified an electrophilic N-terminal glyoxylyl (Glox) group for the first time in secernin-3 (SCRN3). The biological function(s) of both the protein and Glox as a cofactor has not yet been pharmacologically validated because of the lack of selective inhibitors that could disrupt and therefore identify its activity. Here, we present the first platform for analyzing the reactivity and selectivity of an expanded nucleophilic probe library toward main-chain carbonyl cofactors such as Glox and pyruvoyl (PyvI) groups. We first applied the library proteome-wide to profile and confirm engagement with various electrophilic protein targets, including secernin-2 (SCRN2), shown here also to possess a Glox group. A broadly reactive indole ethylhydrazine probe was used for a competitive in vitro RP-ABPP assay to screen for selective inhibitors against such cofactors from a set of commercially available nucleophilic fragments. Using Glox-containing SCRN proteins as a case study, naphthyl hydrazine was identified as a potent and selective SCRN3 inhibitor, showing complete inhibition in cell lysates with no significant cross-reactivity detected for other enzymes. Moving forward, this platform provides the fundamental basis for the development of selective Glox inhibitors and represents a starting point to advance small molecules that modulate electrophile-dependent function
    corecore