306 research outputs found

    PourIt!: Weakly-supervised Liquid Perception from a Single Image for Visual Closed-Loop Robotic Pouring

    Full text link
    Liquid perception is critical for robotic pouring tasks. It usually requires the robust visual detection of flowing liquid. However, while recent works have shown promising results in liquid perception, they typically require labeled data for model training, a process that is both time-consuming and reliant on human labor. To this end, this paper proposes a simple yet effective framework PourIt!, to serve as a tool for robotic pouring tasks. We design a simple data collection pipeline that only needs image-level labels to reduce the reliance on tedious pixel-wise annotations. Then, a binary classification model is trained to generate Class Activation Map (CAM) that focuses on the visual difference between these two kinds of collected data, i.e., the existence of liquid drop or not. We also devise a feature contrast strategy to improve the quality of the CAM, thus entirely and tightly covering the actual liquid regions. Then, the container pose is further utilized to facilitate the 3D point cloud recovery of the detected liquid region. Finally, the liquid-to-container distance is calculated for visual closed-loop control of the physical robot. To validate the effectiveness of our proposed method, we also contribute a novel dataset for our task and name it PourIt! dataset. Extensive results on this dataset and physical Franka robot have shown the utility and effectiveness of our method in the robotic pouring tasks. Our dataset, code and pre-trained models will be available on the project page.Comment: ICCV202

    Incretin-based therapy for type 2 diabetes mellitus is promising for treating neurodegenerative diseases

    Get PDF
    Incretin hormones include glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Due to their promising action on insulinotropic secretion and improving insulin resistance (IR), incretin-based therapies have become a new class of antidiabetic agents for the treatment of type 2 diabetes mellitus (T2DM). Recently, the links between neurodegenerative diseases and T2DM have been identified in a number of studies, which suggested that shared mechanisms, such as insulin dysregulation or IR, may underlie these conditions. Therefore, the effects of incretins in neurodegenerative diseases have been extensively investigated. Protease-resistant long-lasting GLP-1 mimetics such as lixisenatide, liraglutide, and exenatide not only have demonstrated promising effects for treating neurodegenerative diseases in preclinical studies but also have shown first positive results in Alzheimer’s disease (AD) and Parkinson’s disease (PD) patients in clinical trials. Furthermore, the effects of other related incretin-based therapies such as GIP agonists, dipeptidyl peptidase-IV (DPP-IV) inhibitors, oxyntomodulin (OXM), dual GLP-1/GIP, and triple GLP-1/GIP/glucagon receptor agonists on neurodegenerative diseases have been tested in preclinical studies. Incretin-based therapies are a promising approach for treating neurodegenerative diseases

    Three-dimensional tissue scaffolds from interbonded poly(e-caprolactone) fibrous matrices with controlled porosity

    Full text link
    In this article, we report on the preparation and cell culture performance of a novel fibrous matrix that has an interbonded fiber architecture, excellent pore interconnectivity, and controlled pore size and porosity. The fibrous matrices were prepared by combining melt-bonding of short synthetic fibers with a template leaching technique. The microcomputed tomography and scanning electron microscopy imaging verified that the fibers in the matrix were highly bonded, forming unique isotropic pore architectures. The average pore size and porosity of the fibrous matrices were controlled by the fiber/template ratio. The matrices having the average pore size of 120, 207, 813, and 994 mm, with the respective porosity of 73%, 88%, 96%, and 97%, were investigated. The applicability of the matrix as a three-dimensional (3D) tissue scaffold for cell culture was demonstrated with two cell lines, rat skin fibroblast and Chinese hamster ovary, and the influences of the matrix porosity and surface area on the cell culture performance were examined. Both cell lines grew successfully in the matrices, but they showed different preferences in pore size and porosity. Compared with two-dimensional tissue culture plates, the cell number on 3D fibrous matrices was increased by 97.27% for the Chinese hamster ovary cells and 49.46% for the fibroblasts after 21 days of culture. The fibroblasts in the matrices not only grew along the fiber surface but also bridged among the fibers, which was much different from those on two-dimensional scaffolds. Such an interbonded fibrous matrix may be useful for developing new fiber-based 3D tissue scaffolds for various cell culture applications

    Neuroprotective effects of a GIP analogue in the MPTP Parkinson's disease mouse model

    Get PDF
    Parkinson's disease (PD) is a chronic neurodegenerative disease, and there is no cure for it at present. Recent research has indicated a link between type 2 diabetes mellitus (T2DM) and PD, which suggested that a treatment to improve insulin resistance for T2DM may be useful for PD patients. Glucose-dependent insulinotropic polypeptide (GIP) belongs to the incretin hormone family, which can promote insulin release and improve insulin resistance. Several GIP analogues have been developed as potential treatments for T2DM. In the present study, a novel long-lasting GIP analogue, D-Ala2-GIP-glu-PAL, has been tested in an acute PD mouse model induced by four 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intraperitoneal injections. D-Ala2-GIP-glu-PAL treatment (25 nmol/kg ip.) for 7 days after MPTP treatment improved the locomotor and exploratory activity of mice, and improved bradykinesia and movement balance of mice. D-Ala2-GIP-glu-PAL treatment also restored tyrosine hydroxylase (TH) positive dopaminergic neuron numbers in the substantia nigra and TH levels in the striatum. D-Ala2-GIP-glu-PAL also reduced the chronic inflammation response as seen in astrocyte and microglia activation in the substantia nigra pars compacta (SNpc). D-Ala2-GIP-glu-PAL reversed the reduction of synapse numbers (synaptophysin levels), decreased the ratio of growth factor and apoptosis signaling molecules Bax/Bcl-2, and improved the decrease of p-CREBS133 growth factor signaling in the substantia nigra. Therefore, D-Ala2-GIP-glu-PAL promotes cell survival of dopaminergic neuron in the SNpc by activating the cAMP/PKA/CREB growth factor second messenger pathway that also inhibits apoptosis. The present results demonstrate that D-Ala2-GIP-glu-PAL shows promise as a novel treatment of PD

    The Social Income Inequality, Social Integration and Health Status of Internal Migrants in China

    Get PDF
    Background: To examine the interaction between social income inequality, social integration, and health status among internal migrants (IMs) who migrate between regions in China. Methods: We used the data from the 2014 Internal Migrant Dynamic Monitoring Survey in China, which sampled 15,999 IMs in eight cities in China. The Gini coefficient at the city level was calculated to measure social income inequality and was categorized into low (0.2 \u3c Gini \u3c= 0.3), medium (0.3 \u3c Gini \u3c= 0.4), high (0.4 \u3c x \u3c = 0.5), and very high (Gini \u3e 0.5). Health status was measured based upon self-reported health, subjective well-being, and perceptions of stress and mental health. Social integration was measured from four perspectives (acculturation and integration willingness, social insurance, economy, social communication). Linear mixed models were used to examine the interaction effects between health statuses, social integration, and the Gini coefficient. Results: Factors of social integration, such as economic integration and acculturation and integration willingness, were significantly related to health. Social income inequality had a negative relationship with the health status of IMs. For example, IMs in one city, Qingdao, with a medium income inequality level (Gini = 0.329), had the best health statuses and better social integration. On the other hand, IMs in another city, Shenzhen, who had a large income inequality (Gini = 0.447) were worst in health statues and had worse social integration. Conclusion: Policies or programs targeting IMs should support integration willingness, promote a sense of belonging, and improve economic equality. In the meantime, social activities to facilitate employment and create social trust should also be promoted. At the societal level, structural and policy changes are necessary to promote income equity to promote IMs\u27 general health status
    • …
    corecore