1,675 research outputs found

    The Effect of Storage Condition on Biodiesel

    Get PDF

    The role of immunonutrients in the prevention of necrotizing enterocolitis in preterm very low birth weight infants

    Get PDF
    Necrotizing enterocolitis (NEC) is a critical intestinal emergency condition, which mainly occurs in preterm very low birth weight (PVLBW) infants. Despite remarkable advances in the care of PVLBW infants, with considerable improvement of the survival rate in recent decades, the incidence of NEC and NEC-related mortality have not declined accordingly. The fast progression from nonspecific signs to extensive necrosis also makes primary prevention the first priority. Recently, increasing evidence has indicated the important role of several nutrients in primary prevention of NEC. Therefore, the aim of this review is to summarize some potential immunomodulatory nutrients in the prevention of NEC, including bovine colostrum, probiotics, prebiotics (e.g., human milk oligosaccharides), long chain polyunsaturated fatty acids, and amino acids (glutamine, cysteine and N-acetylcysteine, l-arginine and l-citrulline). Based on current research evidence, probiotics are the most documented effective method to prevent NEC, while others still require further investigation in animal studies and clinical randomized controlled trials

    Two variants on T2DM susceptible gene HHEX are associated with CRC risk in a Chinese population

    Get PDF
    Increasing amounts of evidence has demonstrated that T2DM (Type 2 Diabetes Mellitus) patients have increased susceptibility to CRC (colorectal cancer). As HHEX is a recognized susceptibility gene in T2DM, this work was focused on two SNPs in HHEX, rs1111875 and rs7923837, to study their association with CRC. T2DM patients without CRC (T2DM-only, n=300), T2DM with CRC (T2DM/CRC, n=135), cancer-free controls (Control, n=570), and CRC without T2DM (CRC-only, n=642) cases were enrolled. DNA samples were extracted from the peripheral blood leukocytes of the patients and sequenced by direct sequencing. The χ(2) test was used to compare categorical data. We found that in T2DM patients, rs1111875 but not the rs7923837 in HHEX gene was associated with the occurrence of CRC (p= 0.006). for rs1111875, TC/CC patients had an increased risk of CRC (p=0.019, OR=1.592, 95%CI=1.046-2.423). Moreover, our results also indicated that the two variants of HEEX gene could be risk factors for CRC in general population, independent on T2DM (p< 0.001 for rs1111875, p=0.001 for rs7923837). For rs1111875, increased risk of CRC was observed in TC or TC/CC than CC individuals (p<0.001, OR= 1.780, 95%CI= 1.385-2.287; p<0.001, OR= 1.695, 95%CI= 1.335-2.152). For rs7923837, increased CRC risk was observed in AG, GG, and AG/GG than AA individuals (p< 0.001, OR= 1.520, 95%CI= 1.200-1.924; p=0.036, OR= 1.739, 95%CI= 0.989-3.058; p< 0.001, OR= 1.540, 95%CI= 1.225-1.936). This finding highlights the potentially functional alteration with HHEX rs1111875 and rs7923837 polymorphisms may increase CRC susceptibility. Risk effects and the functional impact of these polymorphisms need further validation

    Sox2転写因子のマウス網膜発生過程の役割解析

    Get PDF
    学位の種別:課程博士University of Tokyo(東京大学

    The Relationship between Coenzyme Q10, Oxidative Stress, and Antioxidant Enzymes Activities and Coronary Artery Disease

    Get PDF
    A higher oxidative stress may contribute to the pathogenesis of coronary artery disease (CAD). The purpose of this study was to investigate the relationship between coenzyme Q10 concentration and lipid peroxidation, antioxidant enzymes activities and the risk of CAD. Patients who were identified by cardiac catheterization as having at least 50% stenosis of one major coronary artery were assigned to the case group (n = 51). The control group (n = 102) comprised healthy individuals with normal blood biochemical values. The plasma coenzyme Q10, malondialdehyde (MDA) and antioxidant enzymes activities (catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx)) were measured. Subjects with CAD had significant lower plasma coenzyme Q10, CAT and GPx activities and higher MDA and SOD levels compared to those of the control group. The plasma coenzyme Q10 was positively correlated with CAT and GPx activities and negatively correlated with MDA and SOD. However, the correlations were not significant after adjusting for the potential confounders of CAD with the exception of SOD. A higher level of plasma coenzyme Q10 (≥0.52 μmol/L) was significantly associated with reducing the risk of CAD. Our results support the potential cardioprotective impact of coenzyme Q10

    Syndecan-2 induces filopodia and dendritic spine formation via the neurofibromin–PKA–Ena/VASP pathway

    Get PDF
    Syndecan-2 induced filopodia before spinogenesis; therefore, filopodia formation was used here as a model to study the early downstream signaling of syndecan-2 that leads to spinogenesis. Screening using kinase inhibitors indicated that protein kinase A (PKA) is required for syndecan-2–induced filopodia formation in both human embryonic kidney cells and hippocampal neurons. Because neurofibromin, a syndecan-2–binding partner, activates the cyclic adenosine monophosphate pathway, the role of neurofibromin in syndecan-2–induced filopodia formation was investigated by deletion mutant analysis, RNA interference, and dominant-negative mutant. The results showed that neurofibromin mediates the syndecan-2 signal to PKA. Among actin-associated proteins, Enabled (Ena)/vasodilator-stimulated phosphoprotein (VASP) were predicted as PKA effectors downstream of syndecan-2, as Ena/VASP, which is activated by PKA, induces actin polymerization. Indeed, when the activities of Ena/VASP were blocked, syndecan-2 no longer induced filopodia formation. Finally, in addition to filopodia formation, neurofibromin and Ena/VASP contributed to spinogenesis. This study reveals a novel signaling pathway in which syndecan-2 activates PKA via neurofibromin and PKA consequently phosphorylates Ena/VASP, promoting filopodia and spine formation
    corecore