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Abstract: Necrotizing enterocolitis (NEC) is a critical intestinal emergency condition,
which mainly occurs in preterm very low birth weight (PVLBW) infants. Despite remarkable
advances in the care of PVLBW infants, with considerable improvement of the survival
rate in recent decades, the incidence of NEC and NEC-related mortality have not
declined accordingly. The fast progression from nonspecific signs to extensive necrosis also
makes primary prevention the first priority. Recently, increasing evidence has indicated
the important role of several nutrients in primary prevention of NEC. Therefore, the
aim of this review is to summarize some potential immunomodulatory nutrients in the
prevention of NEC, including bovine colostrum, probiotics, prebiotics (e.g., human milk
oligosaccharides), long chain polyunsaturated fatty acids, and amino acids (glutamine,
cysteine and N-acetylcysteine, L-arginine and L-citrulline). Based on current research
evidence, probiotics are the most documented effective method to prevent NEC, while others
still require further investigation in animal studies and clinical randomized controlled trials.
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1. Introduction

Necrotizing enterocolitis (NEC) is an acute and potentially fatal disease characterized by
inflammation and necrosis in the gastrointestinal tract (GIT). Incidence of NEC is between 7% and 12%
in preterm very low birth weight (PVLBW) infants with an estimated mortality of 15%–30% [1]. The
pathogenesis of NEC is still incompletely understood, but it is thought that several factors are involved
interactively, such as premature birth, low birth weight, ischemia/reperfusion (I/R) injury, abnormal gut
bacterial colonization, and inappropriate enteral feeding [2] (Figure 1). Due to the obscure multifactorial
etiology, early diagnosis and effective treatment of NEC is limited. Consequently, effective strategies in
the prevention of NEC are critically needed.
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Figure 1. Possible mechanisms involved in the pathogenesis of NEC.

Many intestinal functions are affected by prematurity, which may predispose preterm infants to NEC.
These include GIT motility, mesenteric blood flow, digestive and absorptive functions, mucosal barrier
function, bacterial colonization, and gut immunity. Feeding strategies and nutritional interventions play
important roles in the modulation of these functions and thus the prevention of NEC [3]. Human
milk feeding has been shown to prevent NEC [4], whereas infant formula (IF) feeding is associated
with a higher risk of NEC, with a typical risk ratio of 2.77 (95% confidence interval (CI) 1.40 to 5.46) [5].
The superiority of human milk may be attributed to nutrients that can modulate the intestinal
digestive function, barrier function, bacterial colonization, and host immune defense, known as
immunonutrients [6]. Understanding of these nutrients is important in developing better nutritional
support for preterm infants, especially for those with limited access to human milk. Even in developed
countries like UK, Ireland, Canada, Australia, and New Zealand, only 7%–65% neonatal intensive
care units have access to human donor milk [7]. To summarize immunonutrients that may have clinical
potential in the prevention of NEC, a literature search was performed in PubMed, Embase, and Chinese
Biomedical Literature (CBM) databases with the focus on the following nutrients: bovine colostrum,
probiotics, human milk oligosaccharides, long chain polyunsaturated fatty acids, and % amino acids
(i.e., glutamine, cysteine and N-acetylcysteine, L-arginine and L-citrulline). Both animal studies and
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clinical trials were reviewed to provide consideration of the clinical potentials of each nutrient. The
suggested NEC-preventive mechanisms of these nutrients are summarized in Table 1.

Table 1. NEC-preventive mechanisms.

Nutrients
Anti-

Inflammation
Anti-Oxidant

Stress

Regulating
Intestine

Blood Flow

Immuno-
Regulation

Improving
Gut Bacterial
Colonization

Improving
Intestine Cell
Growth and
Development

Bovine
colostrum

+ ´ ´ + + +

Probiotics ´ ´ ´ + + +
HMOs and
Prebiotics

+ ´ ´ + + ´

LCPUFAs + + ´ + ´ ´

Glutamine + + ´ ´ ´ +
Cysteine,

NAC
+ + ´ ´ ´ ´

Arginine/
citrulline

+ + + ´ ´ ´

HMOs, Human milk oligosaccharides; LCPUFAs, n-3 long chain polyunsaturated fatty acids; NAC,
N-acetylcysteine.

2. Bovine Colostrum

Bovine colostrum (BC) is the early milk from cows, which contains much higher amounts of trophic
and immuno-regulatory factors than those in IF (e.g., insulin-like growth factor, epidermal growth factor,
immunoglobulins, lactoferrin, transforming growth factor-β). These factors exert various physiological
functions including intestinal growth and development, intestinal defense, immuno-regulation, and
anti-infection [8]. The effect of BC in the prevention of NEC has been repeatedly documented in
preterm piglets, a well-established model for preterm infants [9]. When compared with human donor
milk, BC showed similar efficacy in decreasing incidence of NEC in pigs [10]. When used as minimal
enteral nutrition (MEN) just after preterm birth, BC markedly improved intestinal digestive and immune
functions, and prevented preterm pigs against NEC, relative to IF [11]. This indicates that BC may be
used as MEN for preterm infants while waiting for mothers to lactate.

Currently, the first clinical pilot trial is ongoing to investigate the safety and tolerability of BC as
the first enteral feeding for preterm infants and its primary effects on feeding tolerance and intestinal
functions, relative to IF and donor human milk (ClinicalTrials.gov, NCT02054091). The first part of the
study (twelve infants recruited) showed that BC was safe and well-tolerated [12]. If this study shows
promising results, further research is warranted to explore whether it can be used to prevent NEC in
PVLBW infants.
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3. Probiotics

During the past decades, probiotics have been studied extensively in the prevention of NEC. Six
recent meta-analyses confirmed the effectiveness of oral probiotics in reducing the incidences of NEC
and death [13–18]. Many level III neonatal centers in Finland, Italy and Japan have been routinely
using probiotics for over a decade and have not reported any significant adverse effects. However,
clinicians are still concerned about the efficacy and potential adverse effects and are facing challenges in
assessing which probiotics (or probiotic combinations) are the most effective ones for PVLBW infants.
Published studies have used a variety of different single or combined probiotic strains with different
target populations. Little is known about whether single-strain probiotics or probiotic combinations are
more effective in the prevention of NEC and death in PVLBW infants.

Recent articles have shown an association between NEC and a lack of gut microbiota diversity [19,20].
One review article suggested that probiotic combinations were more beneficial than single-strain
probiotics for gut and immune functions [21]. An updated meta-analysis including 21 trials (own
data, manuscript submitted) confirmed the preventive effects of probiotics on NEC and death showed
in previous systematic reviews. The updated meta-analysis focused on PVLWB or preterm infants
of ď34 weeks gestation (a high-risk group for NEC or death), who had undergone enteral administration
of probiotics commenced within the first seven days of life and continued for at least 28 days. Supported
by the results from a premature rat model [22], the meta-analysis showed that relative to single-strain
probiotics, probiotic combinations resulted in a marked reduction in NEC incidence, with a pooled
odds ratio (OR) of 0.37 (95% CI, 0.25–0.54; p < 0.00001) and mortality, with a pooled OR of 0.58
(95% CI, 0.43–0.79; p = 0.0006). The potential protective mechanisms might include increased diversity
of the intestinal microbiota, and perhaps suggest the potential benefit of offering healthy bacteria such
as Lactobacillus and Bifidobacterium to balance normal microbiota in this vulnerable population.

Based on the research evidence provided by randomized controlled trials (RCTs) and meta-analyses,
probiotics should be offered routinely to preterm infants at high risk of NEC, if safe and clinically
effective products are available.

4. Human Milk Oligosaccharides and Other Prebiotics

Human milk oligosaccharides (HMOs) are a family of structurally diverse glycans, which consists
of more than one hundred substances and presents in human milk at concentrations up to 20 g/L [23].
Studies in animals suggest that HMOs play a role in many important biological functions, such as shaping
intestinal microbiota composition as metabolic substrates [24,25], inhibiting the binding of pathogens to
the mucosal epithelium as soluble decoy receptors [26,27], and dampening excessive mucosal leukocyte
infiltration and activation as modulators [23,25,28,29]. However, studies showed that HMOs may favor
clostridial population in the distal part of the intestine when fed to mice, and feeding sialyl(α2,3)lactose
to interleukin 10-deficient mice increased colitis severity [30,31].

Recent rat studies showed that protective effects of HMOs against NEC were due to a specific isomer of
disialyllacto-N-tetraose (DSLNT), and a synthetic HMO-mimicking prebiotics, galacto-oligosaccharides
(GOS), had no effects in NEC prevention. This indicates that the protective effect of HMOs against NEC
may be highly structure-specific, as GOS is very different from DSLNT in its chemical structure [29].
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However, DSLNT is not easily obtained by either purification or synthesis due to the limited availability
of human milk and low abundance in bovine milk [32]. Two novel disialyl hexasaccharides,
disialyllacto-N-neotetraose (DSLNnT) and α2-6-linked disialyllacto-N-tetraose (DS’LNT), are readily
available by enzymatic synthesis. They have been shown to protect neonatal rats against NEC [28]. One
clinical study indicated that low concentrations of DSLNT in 4-day mother’s milk were associated with
increased risk of NEC in PVLBW infants with HIV-infected mothers (200 ˘ 126 vs. 345 ˘ 186 µg/mL;
p < 0.05) [33].

Effects of other prebiotics, such as GOS, fructo oligosaccharide (FOS), lactulose, and inulin, have
been studied in clinical trials. The most recent meta-analysis on prebiotics showed no effects on NEC in
preterm infants [24]. A multi-center study, ProPre-Save further confirmed that using prebiotics (inulin)
alone failed to reduce the incidence of NEC (Bell stage ě2) in PVLBW infants compared with placebo
(12% vs. 18%; p > 0.05), although it had positive effects on feeding tolerance, sepsis, and mortality [34].
A recent study showed that addition of GOS/FOS mixture to breast milk significantly reduced the
incidence of NEC (4.0% vs. 22.0%; hazard ratio: 0.49 (95% CI: 0.29–0.84); p = 0.002) and time to full
enteral feeds (average of 11 (7–21) vs. average of 14 (8–36) days; p = 0.02) in exclusively breast-milk fed
PVLBW infants [35]. However, in this study only one infant developed NEC with Bell stage >1, which
indirectly supports the findings of the meta-analysis and the ProPre-Save study. More animal studies
and clinical RCTs are needed to fully evaluate the effects of HMOs including DSLNnT and DS’LNT as
promising therapeutic candidates in NEC prevention.

5. Long Chain Polyunsaturated Fatty Acids

Apart from the nutritional value for visual and cognitive development, n-3 long chain polyunsaturated
fatty acids (LCPUFAs, e.g., docosahexaenoic acid, DHA) and n-6 LCPUFAs (e.g., arachidonic acid, AA)
have versatile biological effects on immune-modulation and inflammatory response [36]. Since nearly
90% of fetal fat deposition occurs during the last 10 weeks of gestation, and accretion of LCPUFAs
increases markedly during the last trimester of gestation, earlier premature birth implies greater LCPUFA
deficiency and greater need for LCPUFA supplementation.

LCPUFA supplementation reduced the incidence of NEC in an experimental neonatal rat model of
NEC [37]. This effect may be due to the functions in maintaining the epithelial integrity, reducing
bacterial and endotoxin translocation, and decreasing mucosal platelet-activating factor synthesis and
receptor activation [38]. Furthermore, DHA has been shown to reduce lipopolysaccharide-induced
nuclear factor (NF)-κB activation and IL-6 production in mice [39]. A recent study also showed that
n-3 fatty acids are beneficial for protecting the premature intestine from inflammation by regulating
eicosanoid- and NF-κB-related metabolite expression in premature rat pups [40]. These results suggest
that LCPUFAs modulate various key factors involved in experimental NEC pathogenesis and partially
explain why LCPUFAs have the protective effect on neonatal NEC.

In preterm infants, decreased postnatal DHA and AA in blood hads been associated with neonatal
morbidities [41]. A recent meta-analysis disclosed that n-3 LCPUFAs supplementation were associated
with a trend toward reduced risk of NEC (pooled relative risk 0.50, 95% CI 0.23–1.10, five studies,
n = 900 infants) in infants born at ď32 weeks gestation without detrimental effect [42]. Large-scale
interventional studies are still required to define the clinical benefits of LCPUFA in PVLBW infants.
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6. Glutamine

Glutamine (Gln) is an important nutrient for intestinal cell proliferation and small intestinal growth [43].
Studies in cell and animal experiments indicated that Gln exerts multiple biological activities such
as antioxidant, anti-apoptosis, and anti-inflammation, which are involved in the pathophysiological
mechanism of NEC [44,45]. Enteral supplementation of Gln attenuated local intestinal inflammatory
damage in rats with NEC [43]. A recent study also found that Gln markedly reduced the mucosal injury
by suppressing the expression of toll-like receptor (TLR) 2/4 and caspace-3 in the ileum and colon of
neonatal rats with NEC, as TLRs play key roles in the pathogenesis of NEC [46,47].

Gln supplementation has been investigated in premature infants in a wide variety of clinical settings.
Gln-supplemented parenteral nutrition (PN) for PVLBW infants has been showed to decrease NEC
incidence compared with a standard PN solution (0/25 vs. 5/30; p < 0.01) [48]. However, meta-analysis
and several subsequent trials did not verify the effect [49–51]. A recent study showed that enteral
supplementation of Gln was safe and could significantly reduce feeding intolerance (p = 0.015) in
PVLBW infants in the first days or weeks of life. There was also a tendency towards lowered risk
of NEC and intestinal perforation, but the differences did not reach statistical significance [52].

The discrepancy between pronounced protective effects in animal models and negative results in
clinical trials warrants further well-designed multicenter RCTs with adequately powered sample size to
clarify the role of Gln as a preventive agent against NEC in PVLBW infants.

7. Cysteine and N-Acetylcysteine

N-acetylcysteine (NAC), the precursor of cysteine, is an important component in the production of
intracellular glutathione [53]. Premedication with NAC was associated with less severe NEC lesions in
an intraluminal casein-induced NEC model using neonatal piglets [54]. In another neonatal rat model of
NEC, NAC showed a protective effect on intestinal injury through its anti-inflammatory and antioxidant
properties [55]. This effect was also demonstrated in two recent studies in experimental animals [56,57].

Few trials have assessed the effects of cysteine or NAC on NEC in preterm infants as primary
outcomes. One Cochrane review concluded that routine addition of short-term cysteine treatment
improves nitrogen balance in preterm infants, but it does not support routine NAC supplementation
for PVLBW infants. Thus, more investigations are needed to evaluate whether cysteine or NAC
supplementation affects NEC outcomes in preterm infants [58].

8. L-Arginine and L-Citrulline

Nitric oxide (NO) plays an essential role in NEC development by regulating vasodilatation and
blood flow to the intestine [59,60]. Endogenous NO originates from the metabolism of L-arginine and
L-citrulline, indicating their potential effects on NEC prevention (Figure 2). Low citrulline concentration
has been reported in preterm infants [61,62] and piglets with NEC [63]. However, a recent study reported
that low citrulline concentration in routinely collected neonatal dried blood spots was not associated with
NEC [64]. There is no animal or clinical study assessing citrulline supplementation on NEC prevention.
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Arginine, an essential amino acid for neonates, is exclusively synthesized by intestinal epithelial
cells [65]. Low levels of plasma arginine in preterm infants are associated with increased incidence
of NEC [62,66]. In several animal models of NEC, L-arginine supplementation has been proven to
play pivotal roles in attenuation of intestinal injury by the L-arginine-NO pathway. For example,
in the neonatal piglet NEC model, intravenous infusion of L-arginine markedly alleviated intestinal
injury [67], and enteral supplementation of L-arginin increased intestinal mucosal growth [65]. In
another ischemia/reperfusion induced NEC model in mice, dietary supplementation with L-arginine and
L-carnitine attenuated the histological intestinal injury and significantly decreased lipid peroxidation in
bowel injury [68].

Parenteral arginine supplementation in preterm infants increased plasma arginine levels and decreased
NEC (6.7% vs. 27.3%; p < 0.01) in premature infants [69]. However, the outcome was confounded by
the presence of many stage I NEC cases in the control group. In another double-blind RCT, enteral
supplementation of L-arginine from day 3 to 28 after birth reduced the incidence of stage III NEC
compared with placebo group [70]. A meta-analysis with 425 PVLBW infants enrolled showed a
60% reduction in all stages of NEC (RR 0.40, 95% CI 0.23 to 0.69, NNT = 5, p = 0.001) by arginine
supplementation compared with placebo and a 59% reduction in the incidence of stage II and III NEC
(RR 0.41, 95% CI 0.20 to 0.85, number needed to treat = 9, p = 0.02). It was concluded that L-arginine
supplementation appeared to be protective against NEC without adverse effects in preterm infants [71].

Based on these findings, L-arginine supplementation deserves to be considered as a novel and
potentially cost-effective method to prevent NEC. However, large multi-center RCTs are needed before
this can become a common practice.
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9. Discussion

NEC is a multifactorial disease with relatively high mortality, and its pathophysiology remains
unclear. Several factors appear to contribute to the development of NEC, including immaturity of
multiple intestinal functions, altered anti-inflammatory control, abnormal gut bacterial colonization,
inappropriate enteral feeding and impaired host defense. The above-discussed immunonutrients have been
shown in animal models to exert various physiological effects on intestinal growth and development,
intestinal defense, immune-modulation and inflammatory response. These promising findings point
toward the application of these nutrients as useful clinical tools. Some of these nutrients have been
applied in clinical practices (e.g., probiotics) while others are still in the research stage (e.g., bovine
colostrum). Although the effectiveness of probiotics in the prevention of NEC has been confirmed by
various clinical trials and meta-analyses, there are still remaining questions in terms of the optimal strain
or strain combinations, timing, dose, and duration of therapy. Further comparative studies are required
to provide better clinical guidelines for probiotic therapy in preterm infants.

10. Conclusions

Enteral supplementation of probiotics is evident in NEC prevention, but clinical guidelines in terms of
timing, strains, dose, length of therapy, and contraindications are urgently needed for PVLBW. Bovine
colostrum seems to be a promising diet in replacement of IF to stimulate the development of the immature
intestine while waiting for the mother’s own milk during the first days of life. LCPUFAs and HMOs
might be directly supplemented to human milk or used to produce better preterm IF for those who have
limited access to human milk. The aforementioned amino acids and LCPUFA might also be added to
parenteral nutrition preparations. Clearly, more animal studies and clinical trials are required to further
investigate the biological functions and to verify the safety and effectiveness of supplementation with
immunonutrients in NEC prevention in PVLBW infants before recommendation of their routine use in
the clinics (Table 2).

Table 2. Evidences of nutritional supplementation in the prevention of NEC.

Nutrients
Clinical Trials (Authors,

Reference No.)
Outcomes

Primary Secondary

Bovine
colostrum

Yanqi Li et al., [12] safe and well tolerated Ò enteral protein intake

Probiotics

Alfaleh K et al., 2010. [15] Ósevere NEC and mortality
no reduction on sepsis

and days on TPN
Deshpande G et al., 2010. [16] Ómortality and 30% NEC no reduction on sepsis

Wang Q et al., 2012. [17] ÓNEC and mortality no reduction on sepsis
Alfaleh K et al., 2014. [18] ÓNEC and mortality no reduction on sepsis
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Table 2. Cont.

Nutrients
Clinical Trials (Authors,

Reference No.)
Outcomes

Primary Secondary

HMOs or
Prebiotics

Van Niekerk E et al., 2014. [33]
low concentrations of

DSLNT were associated
with NECÒ

NA

Dilli D et al., 2015. [34] failed to reduce NEC
Ótime to full enteral feeding,
sepsis, mortality and stays

in NICU

Armanian AM et al., 2014. [35] ÓNEC
Ótime to full enteral feeds and

duration of hospitalization

LCPUFAs Zhang P et al., 2014. [42]
ÓNEC in infants born at
ď32 weeks gestation

ÓBPD in infants born at
ď32 weeks gestation

Glutamine

Bober-Olesińska K et al.,
2005. [48]

ÓNEC
no reduction on sepsis

and stays in NICU
Sevastiadou S et al., 2011. [50] ÓNEC Ósepsis

Tubman TR et al., 2008. [49] no effect on mortality
no effect on NEC, infection,
time to full enteral nutrition,
or duration of hospitalization

Mohamad Ikram I et al., 2011. [51] no reduction on NEC
no reduction on sepsis, duration
of ventilation, and NICU stay

Pawlik, D et al., 2011. [52] ÓFeeding intolerance
lower but no significant

differences in NEC, sepsis
and intestinal perforation

Cysteine or
NAC

Soghier LM et al., 2006. [58]
ÒNitrogen retention

No differences on growth
no reduction on death, NEC,

BPD, ROP, IVH, PVL

L-Arginine,
L-citrulline

Amin HJ et al., 2002. [69]
ÓNEC, Òplasma
arginine levels

no differences in nutrient intake,
plasma ammonia and amino

acid concentrations
Polycarpou E et al., 2013. [70] ÓNEC stage III NA

Mitchell K et al., 2014. [71]
Ó60% all stage NEC and
59% NEC stage II and III

no difference in any
neurodevelopmental
disability at 3 years

NEC: necrotizing enterocolitis; TPN: total parenteral nutrition; BPD: bronchopulmonary dysplasia; NICU:
neonatal intensive Crtinopathy of prematurity care unit; ROP: retinopathy of prematurity; IVH:intraventricular
hemorrhage; PVL: periventricular leukomalacia.
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