3,874 research outputs found
On channel adaptive energy management in wireless sensor networks
Energy constraints in a wireless sensor network are crucial issues critically affecting the network lifetime and connectivity. To realize true energy saving in a wireless environment,the time varying property of the wireless channel should also be taken into account. Unfortunately, this factor has long been ignored in most existing state-of-the-art energy saving protocols. Neglecting the effects of varying channel quality can lead to an unnecessary waste of precious battery resources, and, in turn, can resultin the rapid depletion of sensor energy and partitioning of the network. In this paper, we propose a channel adaptiveenergy managementprotocol, called CAEM, that can exploit this time varying nature of the wireless link. Specifically, CAEM leverages on the synergistically cross-layer interaction between physical and MAC layers. Thus, each sensor node can intelligently access the wireless medium according to the current wireless link quality and the predicted traffic load, to realize an efficient utilization of the energy. Extensivesimulation results indicate that CAEM can achieve as much as 40% reductionin energy dissipation compared with traditional protocols without channel adaptation. © 2005 IEEE.published_or_final_versio
The tseung kwan o landfill controversy
AnalysisThis article examines the controversy that arose from the Hong Kong Government's plan to extend the South East New Territories Landfill in Tseung Kwan O into the Clear Water Bay Country Park, particularly how the proposed landfill extension led to a confrontation between the government and the legislature. The authors argue that s 14 of the Country Parks Ordinance (Cap 208) imposes an obligation on the Chief Executive to make an order which he is not free to repeal thereafter. This arrangement comports with the overall statutory scheme and purpose of the legislation which features a four-stage process with provisions for public consultation. The controversy calls into question the efficacy of this four-stage process as well as that of the environmental impact assessment regime. The authors suggest that there is a need to consider strengthening the statutory mechanism for public involvement to prevent a repetition of the present controversy. This article also examines the broader issue of the territory's waste management strategy and the need for more environmentally sustainable policies.published_or_final_versio
BGCA: bandwidth guarded channel adaptive routing for ad hoc networks
To support truly peer-to-peer applications in ad hoc wireless networks, a judicious and efficient ad hoc routing protocol is needed. Much research has been done on designing ad hoc routing protocols and some well known protocols are also being implemented in practical situations. However, one major drawback in existing state-of-the-art protocols, such as the AODV (ad hoc on demand distance vector) routing protocol, is that the time-varying nature of the wireless channels among the mobile terminals is ignored, let alone exploited. In this paper, by using a previously proposed adaptive channel coding and modulation scheme which allows a mobile terminal to dynamically adjust the data throughput via changing the amount of error protection incorporated, we devise a new ad hoc routing algorithm that dynamically changes the routes according to the channel conditions. Extensive simulation results indicate that our proposed protocol is more efficient in that shorter delays and higher rates are achieved.published_or_final_versio
A multipath ad hoc routing approach to combat wireless link insecurity
As wireless LAN (WLAN) technologies proliferate, it is becoming common that ad hoc networks, in which mobile devices communicate via temporary links, are built using WLAN products. In the IEEE 802.11b standard, the Wired Equivalent Privacy (WEP) scheme is used as the only measure to enhance data confidentiality against eavesdropping. However, owing to the well known pitfalls in Initialization Vector (IV) attachment in the ciphertext, the underlying 40-bit RC4 encryption mechanism in WEP is unsafe regardless of the key size. On the other hand, solutions involving replacement of RC4 by another cipher are not attractive because that may lead to reconstruction of the whole system and result in high costs as well as redevelopment of the products. In order to enhance the security on the existing development efforts, we propose a novel multipath routing approach to combat the link insecurity problem at a higher protocol layer. This approach does not require the application to use sophisticated encryption technologies that may be too heavy burdens for mobile devices. Based on our suggested confidentiality measurement model, we find that our proposed multipath ad hoc routing technique, called Secure Multipath Source Routing (SMSR), is highly effective.published_or_final_versio
Power control approach for IEEE 802.11 ad hoc networks
In packet radio networks, especially an ad hoc wireless network using IEEE 802.11 as the MAC (media access control) protocol, power control is a crucial issue. By using a judicious power control mechanism, co-channel interference can be significantly reduced, thus improving the channel spatial reuse and network capacity. However, efficient power control in an IEEE 802.11 system is very challenging because according to the standard, fixed power is used for transmitting packets, and there is only one channel. In this paper, we propose an enhancement to the standard IEEE 802.11 MAC protocol by improving the handshaking mechanisms and adding one separate power control channel. With the control channel, the receiver notifies its neighbors its noise tolerance. Thus, the neighbors can adjust their transmission power levels to avoid packet collisions at the receiver. Through extensive simulations using NS-2, our proposed power control mechanism is found to be effective in that network throughput can be increased by about 10%, and the battery utilization can also be improved at the same time.published_or_final_versio
An EEG-based brain-computer interface for dual task driving detection
The development of brain-computer interfaces (BCI) for multiple applications has undergone extensive growth in recent years. Since distracted driving is a significant cause of traffic accidents, this study proposes one BCI system based on EEG for distracted driving. The removal of artifacts and the selection of useful brain sources are the essential and critical steps in the application of electroencephalography (EEG)-based BCI. In the first model, artifacts are removed, and useful brain sources are selected based on the independent component analysis (ICA). In the second model, all distracted and concentrated EEG epochs are recognized with a self-organizing map (SOM). This BCI system automatically identified independent components with artifacts for removal and detected distracted driving through the specific brain sources which are also selected automatically. The accuracy of the proposed system approached approximately 90% for the recognition of EEG epochs of distracted and concentrated driving according to the selected frontal and left motor components. © 2013
Theta and alpha oscillations in attentional interaction during distracted driving
© 2018 Wang, Jung and Lin. Performing multiple tasks simultaneously usually affects the behavioral performance as compared with executing the single task. Moreover, processing multiple tasks simultaneously often involve more cognitive demands. Two visual tasks, lane-keeping task and mental calculation, were utilized to assess the brain dynamics through 32-channel electroencephalogram (EEG) recorded from 14 participants. A 400-ms stimulus onset asynchrony (SOA) factor was used to induce distinct levels of attentional requirements. In the dual-task conditions, the deteriorated behavior reflected the divided attention and the overlapping brain resources used. The frontal, parietal and occipital components were decomposed by independent component analysis (ICA) algorithm. The event- and response-related theta and alpha oscillations in selected brain regions were investigated first. The increased theta oscillation in frontal component and decreased alpha oscillations in parietal and occipital components reflect the cognitive demands and attentional requirements as executing the designed tasks. Furthermore, time-varying interactive over-additive (O-Add), additive (Add) and under-additive (U-Add) activations were explored and summarized through the comparison between the summation of the elicited spectral perturbations in two single-task conditions and the spectral perturbations in the dual task. Add and U-Add activations were observed while executing the dual tasks. U-Add theta and alpha activations dominated the posterior region in dual-task situations. Our results show that both deteriorated behaviors and interactive brain activations should be comprehensively considered for evaluating workload or attentional interaction precisely
A quantitative comparison of ad hoc routing protocols with and without channel adaptation
To efficiently support tetherless applications in ad hoc wireless mobile computing networks, a judicious ad hoc routing protocol is needed. Much research has been done on designing ad hoc routing protocols and some well-known protocols are also being implemented in practical situations. However, one major imperfection in existing protocols is that the time-varying nature of the wireless channels among the mobile terminals is ignored, let alone exploited. This could be a severe design drawback because the varying channel quality can lead to very poor overall route quality in turn, resulting in low data throughput. Indeed, better performance could be achieved if a routing protocol dynamically changes the routes according to the channel conditions. In this paper, we first propose two channel adaptive routing protocols which work by using an adaptive channel coding and modulation scheme that allows a mobile terminal to dynamically adjust the data throughput via changing the amount of error protection incorporated. We then present a qualitative and quantitative comparison of the two classes of ad hoc routing protocols. Extensive simulation results indicate that channel adaptive ad hoc routing protocols are more efficient in that shorter delays and higher rates are achieved, at the expense of a higher overhead in route set-up and maintenance. © 2005 IEEE.published_or_final_versio
Recommended from our members
Direct estimation of seismic response in reduced-degree-of-freedom isolation and energy dissipation systems
A methodology for the development of design tools for direct estimation of peak inelastic response in reduced-degree-of-freedom (RDOF) isolation and energy dissipation systems is presented. The suggested procedure is an extension of an earlier method addressing purely hysteretic isolation systems. Herein, the dynamic equation of motion is first normalised to reduce the number of design parameters that significantly affect the response. The sensitivity of normalised response quantities to the amplitude of the ground motion is then investigated through extensive parametric nonlinear dynamic analyses of isolated single-degree-of-freedom (SDOF) systems with linear viscous damping using code-based target spectra. Regression analysis is subsequently employed to develop generalised design equations (GDEs) suitable for design. Further investigations are made to address nonlinear viscous damping and the effect of the transverse component of seismic action in two-degree-of freedom (2DOF) systems under bidirectional excitation, making the procedure applicable to common bridge isolation schemes. GDEs constitute an alternative to equivalent linearisation approaches commonly adopted by codes, informing the selection among alternative isolation and energy dissipations schemes without requiring iterative analysis. The approach is incorporated in the Deformation-Based Design methodology for seismically isolated bridges in a forthcoming paper
Generating a fuzzy rule-based brain-state-drift detector by riemann-metric-based clustering
© 2017 IEEE. Brain-state drifts could significantly impact on the performance of machine-learning algorithms in brain computer interface (BCI). However, less is understood with regard to how brain transition states influence a model and how it can be represented for a system. Herein we are interested in the hidden information of brain state-drift occurring in both simulated and real-world human-system interaction. This research introduced the Riemann metric to categorize EEG data, and visualized the clustering result so that the distribution of the data can be observable. Moreover, to defeat subjective uncertainty of electroencephalography (EEG) signals, fuzzy theory was employed. In this study, we built a fuzzy rule-based brain-statedrift detector to observe the brain state and imported data from different subjects to testify the performance. The result of the detection is acceptable and shown in this paper. In the future, we expect that brain-state drifting can be connected with human behaviors via the proposed fuzzy rule-based classification. We also will develop a new structure for a fuzzy rule-based brain-statedrift detector to improve the detection accuracy
- …