36 research outputs found

    N-Myc and GCN5 Regulate Significantly Overlapping Transcriptional Programs in Neural Stem Cells

    Get PDF
    Here we examine the functions of the Myc cofactor and histone acetyltransferase, GCN5/KAT2A, in neural stem and precursor cells (NSC) using a conditional knockout approach driven by nestin-cre. Mice with GCN5-deficient NSC exhibit a 25% reduction in brain mass with a microcephaly phenotype similar to that observed in nestin-cre driven knockouts of c- or N-myc. In addition, the loss of GCN5 inhibits precursor cell proliferation and reduces their populations in vivo, as does loss of N-myc. Gene expression analysis indicates that about one-sixth of genes whose expression is affected by loss of GCN5 are also affected in the same manner by loss of N-myc. These findings strongly support the notion that GCN5 protein is a key N-Myc transcriptional cofactor in NSC, but are also consistent with recruitment of GCN5 by other transcription factors and the use by N-Myc of other histone acetyltransferases. Putative N-Myc/GCN5 coregulated transcriptional pathways include cell metabolism, cell cycle, chromatin, and neuron projection morphogenesis genes. GCN5 is also required for maintenance of histone acetylation both at its putative specific target genes and at Myc targets. Thus, we have defined an important role for GCN5 in NSC and provided evidence that GCN5 is an important Myc transcriptional cofactor in vivo

    The Menin Tumor Suppressor Protein Is Phosphorylated in Response to DNA Damage

    Get PDF
    Multiple endocrine neoplasia type 1 (MEN1) is a heritable cancer syndrome characterized by tumors of the pituitary, pancreas and parathyroid. Menin, the product of the MEN1 gene, is a tumor suppressor protein that functions in part through the regulation of transcription mediated by interactions with chromatin modifying enzymes.Here we show menin association with the 5' regions of DNA damage response genes increases after DNA damage and is correlated with RNA polymerase II association but not with changes in histone methylation. Furthermore, we were able to detect significant levels of menin at the 3' regions of CDKN1A and GADD45A under conditions of enhanced transcription following DNA damage. We also demonstrate that menin is specifically phosphorylated at Ser394 in response to several forms of DNA damage, Ser487 is dynamically phosphorylated and Ser543 is constitutively phosphorylated. Phosphorylation at these sites however does not influence the ability to interact with histone methyltransferase activity. In contrast, the interaction between menin and RNA polymerase II is influenced by phosphorylation, whereby a phospho-deficient mutant had a higher affinity for the elongating form of RNA polymerase compared to wild type. Additionally, a subset of MEN1-associated missense point mutants, fail to undergo DNA damage dependent phosphorylation.Together, our findings suggest that the menin tumor suppressor protein undergoes DNA damage induced phosphorylation and participates in the DNA damage transcriptional response

    Requirement of GCN5 histone acetyltransferase in mouse neural tube closure and skeletal patterning

    No full text
    Histone acetylation plays an essential role in many DNA-related processes such as transcriptional regulation via modulation of chromatin structure. Many histone acetytransferases have been discovered and studied in the past few years, but the roles of different histone acetyltransferases (HAT) during mammalian development are not well defined at present. Gcn5 histone acetyltransferase is highly expressed until E16.5 during development. Previous studies in our lab using a constitutive null allele demonstrated that Gcn5 knock out mice are embryonic lethal, precluding the study of Gcn5 functions at later developmental stages. The creation of a conditional Gcn5 null allele, Gcn5flox allele, bypasses the early lethality. Mice homozygous for this allele are viable and appear healthy. In contrast, mice homozygous for a Gcn5 Ξ”ex3-18 allele created by Cre-loxP mediated deletion display a phenotype identical to our original Gcn5 null mice. Strikingly, a Gcn5flox(neo) allele, which contain a neomycin cassette in the second intron of Gcn5 is only partially functional and gives rise to a hypomorphic phenotype. Initiation of cranial neural tube closure at forebrain/midbrain boundary fails, resulting in an exencephaly in some Gcn5flox(neo)/flox(neo) embryos. These defects were found at an even greater penetrance in Gcn5flox(neo)/Ξ” embryos and become completely penetrant in the 129Sv genetic background, suggesting that Gcn5 controls mouse neural tube closure in a dose dependent manner. Furthermore, both Gcn5flox(neo)/flox(neo) and Gcn5 flox(neo)/Ξ” embryos exhibit anterior homeotic transformations in lower thoracic and lumbar vertebrae. These defects are accompanied by decreased expression levels and a shift in anterior expression boundary of Hoxc8 and Hoxc9. This study provides the first evidence that Gcn5 regulates Hox gene expression and is required for normal axial skeletal patterning in mice

    Emerging roles of circular RNAs in gastric cancer metastasis and drug resistance

    No full text
    Abstract Gastric cancer (GC) is an aggressive malignancy with a high mortality rate and poor prognosis, primarily caused by metastatic lesions. Improved understanding of GC metastasis at the molecular level yields meaningful insights into potential biomarkers and therapeutic targets. Covalently closed circular RNAs (circRNAs) have emerged as crucial regulators in diverse human cancers including GC. Furthermore, accumulating evidence has demonstrated that circRNAs exhibit the dysregulated patterns in GC and have emerged as crucial regulators in GC invasion and metastasis. However, systematic knowledge regarding the involvement of circRNAs in metastatic GC remains obscure. In this review, we outline the functional circRNAs related to GC metastasis and drug resistance and discuss their underlying mechanisms, providing a comprehensive delineation of circRNA functions on metastatic GC and shedding new light on future therapeutic interventions for GC metastases

    BRD4 Targets the KEAP1-Nrf2-G6PD Axis and Suppresses Redox Metabolism in Small Cell Lung Cancer

    No full text
    Accumulating evidence has witnessed the Kelch-like ECH-associated protein 1(KEAP1)- nuclear factor (erythroid-derived 2)-like 2 (Nrf2) axis is the main regulatory factor of cell resistance to endogenous and exogenous oxidative assaults. However, there are few studies addressing the upstream regulatory factors of KEAP1. Herein, bioinformatic analysis suggests bromodomain-containing protein 4 (BRD4) as a potential top transcriptional regulator of KEAP1 in lung cancer. Using molecular and pharmacological approaches, we then discovered that BRD4 can directly bind to the promoter of KEAP1 to activate its transcription and down-regulate the stability of Nrf2 which in turn transcriptionally suppresses glucose-6-phosphate dehydrogenase (G6PD) in small cell lung cancer (SCLC), a highly proliferative and aggressive disease with limited treatment options. In addition, BRD4 could associate with the Nrf2 protein in a non-KEAP1-dependent manner to inhibit Nrf2 activity. Furthermore, simultaneous application of JQ1 and ATRA or RRx-001 yielded synergistic inhibition both in vitro and in vivo. These data suggest metabolic reprogramming by JQ1 treatment improves cell resistance to oxidative stress and might be a resistance mechanism to bromodomain and extra-terminal domain (BET) inhibition therapy. Altogether, our findings provide novel insight into the transcriptional regulatory network of BRD4 and KEAP1 and transcriptional regulation of the pentose phosphate pathway in SCLC

    BRD4 Targets the KEAP1-Nrf2-G6PD Axis and Suppresses Redox Metabolism in Small Cell Lung Cancer

    No full text
    Accumulating evidence has witnessed the Kelch-like ECH-associated protein 1(KEAP1)- nuclear factor (erythroid-derived 2)-like 2 (Nrf2) axis is the main regulatory factor of cell resistance to endogenous and exogenous oxidative assaults. However, there are few studies addressing the upstream regulatory factors of KEAP1. Herein, bioinformatic analysis suggests bromodomain-containing protein 4 (BRD4) as a potential top transcriptional regulator of KEAP1 in lung cancer. Using molecular and pharmacological approaches, we then discovered that BRD4 can directly bind to the promoter of KEAP1 to activate its transcription and down-regulate the stability of Nrf2 which in turn transcriptionally suppresses glucose-6-phosphate dehydrogenase (G6PD) in small cell lung cancer (SCLC), a highly proliferative and aggressive disease with limited treatment options. In addition, BRD4 could associate with the Nrf2 protein in a non-KEAP1-dependent manner to inhibit Nrf2 activity. Furthermore, simultaneous application of JQ1 and ATRA or RRx-001 yielded synergistic inhibition both in vitro and in vivo. These data suggest metabolic reprogramming by JQ1 treatment improves cell resistance to oxidative stress and might be a resistance mechanism to bromodomain and extra-terminal domain (BET) inhibition therapy. Altogether, our findings provide novel insight into the transcriptional regulatory network of BRD4 and KEAP1 and transcriptional regulation of the pentose phosphate pathway in SCLC

    Differentially expressed microRNAs in diapausing versus HCl-treated <i>Bombyx</i> embryos

    No full text
    <div><p>Differentially expressed microRNAs were detected to explore the molecular mechanisms of diapause termination. The total small RNA of diapause-destined silkworm eggs and HCl-treated eggs was extracted and then sequenced using HiSeq high-throughput method. 44 novel miRNAs were discovered. Compared to those in the diapause-destined eggs, 61 miRNAs showed significant changes in the acid-treated eggs, with 23 being up-regulated and 38 being down-regulated. The potential target genes of differentially expressed miRNAs were predicted by miRanda. Gene Ontology and KEGG pathway enrichment analysis of these potential target genes revealed that they were mainly located within cells and organelles, involved in cellular and metabolic processes, and participated in protein production, processing and transportation. Two differentially expressed genes, <i>Bombyx mori SDH</i> and <i>Bmo-miR-2761-3p</i>, were further analyzed with qRT-PCR. <i>BmSDH</i> was significantly up-regulated in the HCl-treated eggs, while <i>Bmo-miR-2761-3p</i> was down-regulated. These results suggested that these two genes were well coordinated in silkworm eggs. Dual luciferase reporter assay demonstrated that <i>Bmo-miR-2761-3p</i> inhibited the expression of <i>BmSDH</i>.</p></div
    corecore